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Abstract 

The ground source heat pumps (GSHPs) of customers connected to the district 

heating and cooling (DHC) network can benefit both the customer and the energy 

company. However, operating the GSHP to minimize the cost of providing 

heating and cooling to the customer while ensuring the long-term stability of the 

ground temperature is a challenge. This thesis addresses the challenge by 

developing accurate models of GSHP and optimizing the operation of the GSHP 

system using these models.  

The models presented in this thesis use field measurements to develop accurate 

models with low computational time. The main components of a GSHP system 

are the heat pump and the borehole heat exchanger (BHE). This thesis presents 

two approaches to use measured data to improve the accuracy of analytical 

models for BHE. The first approach is the calibration of the model parameters 

using this measured data. The second approach combines the analytical model 

with an artificial neural network model resulting in a hybrid model. The 

calibration approach reduced the relative RMSE of the analytical model from 

21.9% to 13.9% in the testing period. The relative RMSE of the hybrid model for 

the testing period was 6.3%.  

We compared different data-driven models for heat pumps and determined that 

artificial neural network models have an advantage over traditional regression 

models when field measurements are available. The artificial neural network 

model was refined to better utilize the measured data. The refined models of heat 

pumps had a relative RMSE of less than 5%.   

The hybrid BHE model and an artificial neural network model for the heat pumps 

were used to model the GSHP system. The model was validated using four years 

of field measurements. The relative MAE for the compressor power and BHE 

power were 7.3% and 19.1% respectively.  

The validated model was used to optimize the operation of the GSHP system. In 

optimal operation, the cost of providing heating and cooling to the area was 

minimized from the perspective of the energy company while maintaining a 

stable temperature in the ground. In optimal operation, the annual cost of 

operation was shown to reduce by 64 t€ and the annual CO2 emission was shown 

to reduce by 92 tons.  
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Sammanfattning  

Bergvärmepumpar som är anslutna till fjärrvärme- och kylnät kan vara till fördel 

både för användare och leverantörer av energi. I detta sammanhang utgör 

emellertid driftstrategin en stor utmaning för att minimera energikostnaden för 

att tillhandahålla värme och kyla och samtidigt säkerställa att marktemperaturen 

långsiktigt blir stabil. En viktig målsättning med denna avhandling har därför 

varit att förfina och utveckla modeller för driftoptimering av ett 

bergvärmepumpsystemi samverkan med ett fjärrvärmenät. 

Huvudkomponenterna i ett bergvärmepumpsystem är värmepumpen och 

borrhålsvärmeväxlaren. Denna avhandling presenterar två metoder för att 

använda verkliga driftdata med syftet att förbättra noggrannheten hos analytiska 

modeller för borrhålsvärmeväxlaren. Det första tillvägagångssättet är kalibrering 

av modellparametrarna med hjälp av uppmätta data. Det andra 

tillvägagångssättet kombinerar den analytiska modellen med en artificiell neural 

nätverksmodell som resulterar i en hybridmodell. Kalibreringsmetoden 

reducerade den analytiska modellens standardavvikelse från 21,9% till 13,9% 

under testperioden. Standardavvikelsen för hybridmodellen för testperioden var 

6,3%. 

Vid jämförelsen av olika datadrivna modeller för värmepumpar konstaterades det 

att artificiella neurala nätverksmodeller har en fördel jämfört med traditionella 

regressionsmodeller då fältmätningar är tillgängliga. Den artificiella neurala 

nätverksmodellen förfinades för att på bästa sätt nyttja uppmätta data. Med de 

förfinade modellerna erhölls en standardavvikelse på mindre än 5%. 

Borrhålsvärmeväxlarens modell och en artificiell neural modell för 

värmepumparna användes för att modellera bergvärmepumpsystemet. Modellen 

validerades med driftdata från fyra års fältmätningar. Det relativa medelfelet för 

kompressoreffekten och borrhålsvärmeväxlarens effekt var 7,8% respektive 

19,1%. 

Den validerade modellen användes för att optimera driften av 

bergvärmepumpsystemet. Vid optimal drift minimerades kostnaden för att 

tillhandahålla uppvärmning och kyla sett ur energileverantörens perspektiv, 

samtidigt som en stabil temperatur i marken bibehölls. Vid optimal drift visade 

sig den årliga driftskostnaden minska med 64 t€ och det årliga koldioxidutsläppet 

visade sig minska med 92 ton. 
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Preface 

Heating and cooling play a significant role in the transition to a sustainable 

energy system. GSHPs can be an important part of the future energy system as 

they can efficiently use electricity to supply heating and cooling and store excess 

heat and cold for long periods. A connection between GSHP and the DHC network 

is desirable as it helps in the integration of the energy system.  

This thesis explores how to operate a GSHP of a customer connected to DHC to 

make the production heating and cooling more economical and sustainable. The 

operation of a customer’s GSHP is considered from the perspective of an energy 

company, thus alluding to the subject of prosumers. The main method used in 

this thesis is mathematical modeling, which has been used to simulate and 

improve the performance of the heating and cooling system. Methods to improve 

the accuracy of the model using field measurements were studied. We used a large 

GSHP at the University Hospital in Umeå that also subscribes to the DHC 

network as the case study in this work. The study was performed at the 

Department of Applied Physics and Electronics at Umeå University. This work 

was financially supported by the Industrial Doctoral School at Umeå University 

and Umeå Energi AB.  
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Nomenclature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Symbols  

xt Input of an RNN at time t 

at Activation of an RNN at time t 

yt Output of an RNN at time t 

Tb,i Borehole wall temperature of borehole i (0C) 

Tfin,i Inlet temperature of borehole i (0C) 

nb Number of boreholes 

rb Borehole radius (m) 

H Active length of borehole (m) 

D Groundwater level (m) 

k Thermal conductivity of the ground (W(mK)-1) 

ρCp Volumetric heat capacity of the ground (MJK-1m-3) 

Rb Borehole resistance (mKW-1 ) 

Tug Undisturbed ground temperature (0C) 

BHATbana 
Average borehole wall temperature of borehole group A from the 
analytical model (0C) 

BHBTbana 
Average borehole wall temperature of borehole group B from the 
analytical model (0C) 

BHAPana 
Average borehole power of borehole group A from the analytical 
model (W) 

BHBPana 
Average borehole power of borehole group B from the analytical 
model (W) 

BHATint Inlet temperature of borehole group A at time t (0C) 

BHBTint Inlet temperature of borehole group B at time t  (0C) 

BHAmft Mass flow rate in borehole group A at time t (kgs-1) 

BHBmft Mass flow rate in borehole group B at time t (kgs-1) 

BHAPt Power of borehole group A at time t(w) 

BHBPt Power of borehole group B at time t (W) 

Naa Number of hours after the last analytical step 

TC Condenser temperature (0C) 

TE Evaporator temperature (0C) 

Qc Condenser power (W) 

UTr Fraction of time the compressors are on 

Qcr Ratio of actual condenser power to design condenser power 

QSC Sub-cooler power (W) 

CompPower Compressor power (W) 
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HPCoolmf Mass flow rate of the cooling circuit  (kgs-1) 

HPHeatPower Total Condenser Power of heat pumps (W) 

HPHeatTout Outlet temperature of heating side of heat pump (0C) 

DHWPower Domestic hot water power (W) 

DWHTout Outlet temperature of domestic hot water (0C) 

HPCoolTin Inlet temperature of cooling side of heat pump (0C) 

HPCoolPower Evaporator power (W) 

CoolTin Outlet temperature of cooling side of heat pump (0C) 

BHP Total power of the BHE (W) 

Abbreviations 

GSHP Ground source heat pump 

DHC District heating and cooling 

BHE Borehole heat exchanger 

RMSE Root mean square error 

MAE Mean absolute error 

ANN Artificial neural network 

TRT Thermal response test  

RO Research objectives 

RNN Recurrent neural networks  

LSTM long short-term memory 

GRU Gated recursive units  

HXH Heat exchanger of heating circuit 

HXC Heat exchanger of cooling circuit 

HXDHW Heat exchanger for domestic hot water 

3WVH Three-way valve of heating circuit 

3WVC Three-way valve of cooling circuit 

DHW Domestic hot water 

UPV Universitat Politècnica de València  

LM Levenberg-Marquardt  

COP Coefficient of performance 

HP1&2 Heat pumps 1 and 2  

HP3 Heat pump 3 

NN Neural network 

LMTD Log mean temperature difference 
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1 Introduction  

Space heating and cooling accounts for more than 25% of the total energy in 

Europe[1]. Despite the increase in the share of renewables recently, the 

percentage of renewable energy in heating and cooling is only 21%[2]. Hence, 

making heating and cooling more efficient and sustainable will increase energy 

security, cut costs for households and businesses, and help the EU in achieving 

its greenhouse gas emission reduction goals[3]. District heating and cooling 

(DHC) and heat pumps have the potential to increase the share of renewable 

energy[4,5] through the use of waste heat, biomass, and electrification. Moreover, 

DHC and heat pump help in the integration of the energy system[6]. An 

integrated energy system allows the transfer of energy among heat, cold and 

electrical networks. Heat pumps can play a crucial role in the integration by 

converting excess electricity to heat or cold, which can be easily stored for later 

use.  

In Sweden, around 55% of the heating for residential and service sector buildings 

is supplied by district heating, and around 20% is supplied by heat pumps[7]. The 

high share of DHC and heat pumps has enabled Sweden to reach 65% renewable 

energy for total heating and cooling[2]. DHC is dominant in buildings with high 

demand density, like multi-family buildings and service sector buildings, where 

DHC has more than 80% market share. In single-family buildings, DHC is less 

dominant, with only a 17% market share[7].  Heat pumps are a common 

alternative to DHC in single-family houses. In recent years, due to increasing 

building efficiency and improvements in heat pumps, heat pumps are being used 

in multi-family and service sector buildings, especially ground source heat pumps 

(GSHPs). Hence, GSHP’s are considered as a serious competitor for DHC[8,9]. 

This trend is expected to continue as the share of renewable electricity 

increases[10]. 

The overlap in the markets of GSHP and DHC has resulted in many buildings 

with both GSHP and DHC. If operated properly, such buildings can benefit both 

the energy companies and the building owners[11]. GSHPs connect the heating 

network to the electric network, which can increase the utilization of renewable 

energy and reduce costs[6,12,13]. However, there are a few concerns that have to 

be addressed for heating and cooling systems with both GSHP and DHC to 

operate beneficially. A non-optimal distribution of load between the GHSP and 

the DHC might increase the cost of the energy company and/or the building 

owner. An additional concern for the building owner is the long-term stability of 

the GSHP. The GSHP extracts and/or injects heat into the ground, which can 

accumulate over the years and change the temperature of the ground, which 

changes the efficiency of the GSHP.  



 

2 

Operating the GSHP to minimize the cost while maintaining long-term stability 

requires a reliable model of the GSHP. The main components of a GSHP are the 

heat pump and the borehole heat exchanger (BHE). In order to consider the long-

term stability, the BHE model must consider a time scale of several years due to 

the large heat capacity of the ground[14]. The BHE model must also consider 

shorter time scales to simulate the energy performance of the heat pump 

accurately.  The large variation in time scales makes the modeling of BHE hard, 

especially for large BHE. 

The modeling of BHE is an active research area, but a model with a reasonable 

computational time that can represent both the long-term and short-term effects 

is still not available. Most models aim to be accurate in either the short-term or 

the long-term but not both. The long-term models use analytical[15–22] or 

numerical[23–27] methods to accurately represent the ground around the BHE 

but use a simplified representation of the inside of the BHE. The short-term 

models, on the other hand, use detailed numerical models[28–30], or a 

combination of resistor and capacitors[31–35], or analytical solutions[36–40] to 

represent the inside of the BHE and simplify the model of the ground. There have 

been some attempts to combine the long-term and short-term models[41–43]. 

The large computational time required for such models makes it impractical to 

use such models for the optimization of large GSHPs. In fact, most models for 

optimization of GSHP use a simple BHE model[44–48] or no BHE model[49,50]. 

Another issue with the modeling of BHE is the availability of accurate properties 

of the ground. The properties of the ground for larger BHE are usually 

determined through an in-situ thermal response test (TRT)[51,52], in which the 

temperature variation of the circulating fluid is used to determine the properties 

of the borehole and the ground. The properties obtained from TRT have a high 

uncertainty[53]. Moreover, the properties of the ground might vary due to ground 

water flow and ground water level.   

With the increase in the number of larger GSHP, the number of monitored GSHP 

has also increased. As a result, the interest in methods to utilize monitored data 

has also increased. Several studies have used the monitored data for the 

validation of models[54–57]. More recently, the monitored data has been used to 

improve BHE models. The uncertainty in thermal properties of the BHE can be 

reduced through calibration using the monitored data[58,59]. There are also 

many examples of data-driven models for GSHP[60–64].  These examples show 

that the monitored data can be used to overcome the shortcomings of BHE 

models. However, more research is required to develop methods that can utilize 

the monitored data.  
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Data-driven models have been used for heat pump modeling. Several regression 

models can use the monitored data or data from the manufacturers to predict the 

performance of a heat pump[65–68]. More complex data-driven models like 

artificial neural networks (ANN) have also been used to represent heat 

pumps[69–71]. The accuracy of data-driven models also depends on the quantity 

and quality of data used to train the models. The accuracy of the models can 

deteriorate if the actual operating conditions are not reflected in the training 

data[72,73]. Therefore, a better understanding of the relationship between the 

data availability and the choice of model is required.   

1.1 Research Objectives 

The overarching objective of this thesis is to develop a method to optimize the 

operation of a customer’s GSHP that operates in parallel to a DHC network. The 

objective of the optimization is to reduce the cost of producing the energy for 

heating and cooling while ensuring the sustainable operation of the GSHP. To 

achieve this objective, we needed an accurate model of GSHP that is 

computationally efficient. Therefore, the other objective of this thesis is to 

develop models of a GSHP and its components that use monitored data to have 

high accuracy while keeping the computational time low. The specific research 

objectives (RO) of this thesis are: 

RO1: Develop an accurate model for a GSHP using monitored data 

RO2: Develop a model for a BHE that uses monitored data to improve the 

accuracy of the model and is computationally efficient 

RO3: Develop an accurate model for a heat pump using monitored data  

RO4: Optimize the operation of a consumer’s GSHP operating in parallel to 

a DHC network 

Through these research objectives, the thesis attempts to contribute to the field 

of modeling and optimization of GSHP. The methods developed in this thesis are 

used to demonstrate the benefits of operating a customer’s GSHP in cooperation 

with the DHC network operator. However, the models and the optimization 

method developed in this thesis have a broader field of application. Developing a 

good BHE model that can consider both short-term and long-term effects is still 

an open problem. This thesis contributes towards a solution to this problem. The 

models developed in this thesis also show how to utilize the increasing amount of 

data from field measurements to improve model predictions. The model 

predictions can be used to improve the performance or to detect faults of GSHP 

systems. The optimization method developed in this thesis presents a way to 
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consider and compensate for the effect of the long-term operation of GSHP while 

developing a control strategy. This method can be used in many GSHP 

applications, with multiple heating and/or cooling sources. 

1.2 Research flow and thesis outline 

The research objectives of the thesis were addressed in four research papers 

published/submitted during the Ph.D. The objectives RO2 and RO3 were 

addressed first so that RO1 could be achieved. The first two papers attempted to 

achieve RO2, i.e., the development of a model for a BHE that uses monitored data 

to improve the accuracy of the model while keeping the computational time low. 

Paper II and I present two different approaches to achieve RO2. In Paper I, the 

measured data was used for improving the accuracy of a simple analytical model 

through calibration. Paper II presented a hybrid analytical ANN model for BHE. 

After comparing the two approaches, the hybrid approach was adopted for the 

final model of GSHP. Since data-driven models are already prevalent in the 

modeling of heat pumps, Paper III achieved RO3 by addressing the challenge of 

choosing and refining data-driven models of heat pumps to best suit the available 

data. A model of an entire GSHP was presented in Paper IV, hence completing 

RO1. Paper IV also presented a method to optimize the operation of a GSHP 

operating with DHC to satisfy the heating and cooling needs of an area using the 

model of GSHP, i.e., RO4 was also accomplished. Figure 1 shows the flow of 

research and the research objective/s of each paper of the thesis. 
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Figure 1: Flow of research in the thesis showing the research objectives and the research articles 

addressing the research objectives  

This thesis is organized into eight chapters, Introduction, Background, 

Installation Description, Model Description, Operation Optimization, Results, 

Discussion, and Conclusion.  

Chapter 1 provides the overall context of the thesis and introduces the research 

objectives.  Chapter 2 summarizes earlier works in the field to provide the context 

of the current work. The methods in this thesis were developed using the case 

study of a hospital area in northern Sweden. The hospital has a large GSHP, which 

is used along with the DHC network to meet the heating and cooling demands of 

the buildings.  A description of the heating and cooling system with a focus on the 

GSHP system is presented in Chapter 3. Chapters 4 and 5 describe the methods 

used in the thesis. Chapter 4 presents the models developed in this thesis. The 

first part of the chapter presents models for the BHE. The measured data is used 

to improve an analytical model presented in Chapter 4.1.1. The calibration 

method from Paper I is described in chapter 4.1.2, and the hybrid model from 

Paper II is described in chapter 4.1.3. The models for heat pumps used to achieve 

RO3 are presented in Chapter 4.2.  Chapter 4.3 describes the model of the 

complete GSHP system. The optimization method used to achieve RO4 is 

presented in chapter 5. The summary of the results of methods in chapter 4 and 
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chapter 5 is presented in chapter 6. A discussion about the results and the future 

direction of the research is presented in chapter 7. The main conclusions of the 

thesis are summarized in chapter 8.  
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2 Background 

2.1 GSHP  

Heat pumps transfer heat from a low-temperature to a high-temperature heat 

source. The efficiency of heat pumps is inversely proportional to the temperature 

difference between the sources. Due to the relative stability of the ground 

temperature, the ground is at a higher temperature than the outdoor air in winter 

and lower temperature than the outdoor air in summer. GSHP uses this to 

increase the efficiency of heat pumps. (Note: the term ground source heat pump 

(GSHP) is used in this thesis, even though the ground can be used as both heat 

source and heat sink)  The heat can be extracted from/injected into the ground 

using open-loop or closed-loop systems.  Open-loop systems directly use 

groundwater as heat source/sink, while closed-loop systems extract/inject the 

heat from the ground using a secondary fluid through a heat exchanger. Closed-

loop systems dominate the market due to strict regulations regarding the use of 

groundwater and issues related to water quality[8,74]. Closed-loop systems can 

have either horizontal or vertical heat exchangers. Vertical heat exchangers have 

a higher installation cost, but they are more efficient and require lesser 

land[25,74,75]. Hence, vertical heat exchangers are the most common type of 

BHE, especially for larger installations[25,76].  

 

Figure 2: Schematic of the main components of a GSHP with closed-loop vertical BHE 
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Figure 2 shows a schematic of a GSHP with closed-loop vertical BHE. A GSHP 

consists of a ground circuit that extracts/injects heat into the ground, a building 

circuit that delivers the heat/cold to the buildings, and a heat pump. GSHPs were 

first commercially used in the 1940s. Since then, the use of GSHP has grown 

whenever there was a need for increased energy efficiency [76]. Sweden has a long 

history of GSHP use, with initial development in the 1970’s and rapid 

development in the ’80s and ’90s, during which period Sweden became the world 

leader in GSHP research and industry[8]. Historically, single-family buildings 

have been the primary market of GSHPs, but in the last decade, the market of 

larger GSHPs also has increases[8]. Larger GSHPs are often used for both heating 

and cooling. Hence the ground acts as a storage for heat and cold.  

The ability of GSHP to store energy can increase the utilization of waste 

heat[77,78] and solar energy[79]. The connection of GSHPs with the electrical 

network helps in the utilization of surplus electricity[12] and increases the 

utilization of renewable electricity[13]. Therefore, GSHP can play an important 

role in future energy systems as a connection between electrical and DHC 

networks and as a store of excess energy in the energy system.  

2.2 BHE modeling 

Most BHE models can be classified into long-term models and short-term 

models. Long-term models focus on modeling the heat transfer in the ground 

around the borehole, also called the global problem, while short-term models 

focus on modeling the heat transfer inside the borehole. Due to the relatively low 

heat capacity of the borehole, the heat transfer inside the borehole is only 

important for time scales of a few hours. For time scales of a few hours to decades, 

the heat transfer in the ground is important[14].  

Eskilson[23] proposed the use of a response function of a BHE, called the g-

function, to simplify the long-term models. The g-function is the non-

dimensional temperature response of a BHE to a constant heat load. The 

response of the BHE to a variable load can be obtained using temporal 

superposition. Eskilson presented a finite difference method and an analytical 

method that represents the borehole as a finite line source (FLS) to calculate the 

g-function. Since then, several numerical and analytical methods to calculate the 

g-function have been proposed.  

Finite difference method has a more accurate representation of the boundary 

condition at the borehole wall compared to the finite line source method. This 

leads to a more accurate g-function of the BHE, especially when there are multiple 

boreholes with high interaction[80,81]. Hence, numerical methods are used in 

many commercial software like earth energy designer[82] and GHLEPRO[83]. 
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The numerical models for BHE have been improved further by using a more 

accurate representation of the boundary condition at the borehole wall 

[26,80,84], considering groundwater flow[85,86], and considering 

heterogeneous soil[86,87]. Despite the improvements, the main disadvantage of 

the use of numerical models for large BHE is their computational time. Due to 

the high computational time, numerical models are generally used for a limited 

number of geometries, for which the g-functions are pre-computed and 

stored[88]. 

Analytical models have lower computational times; hence they can be calculated 

in the model. Therefore, the geometry of the BHE is not restricted by pre-

calculated g-functions. Most of the analytical models are based on the FLS 

approach, where the borehole wall is represented by a line source of finite length, 

and an adiabatic boundary condition is applied at the top surface of the 

ground[15,23]. Lamarche and Beauchamp[89] and Marcotte and Pasquier[18] 

reduced the computational time for the FLS method using Laplace and Fourier 

transform, respectively. Lamarche[17] introduced the non-history scheme, which 

aggregates all the previous loads, hence making it easy to simulate hourly loads. 

The inaccuracy in the boundary condition at the borehole wall was corrected by 

first using different heat flux for each borehole[81,90] and then by using different 

heat flux for different segments of a borehole[19]. Therefore, overcoming the 

main disadvantage of analytical models. The range of BHE configurations that 

can be simulated was increased using models that can simulate BHE with 

multiple inlets[20,90–92]. Lazzarotto[93] introduced a model that can include 

boreholes with different inclinations. Analytical models that can consider 

geothermal gradient[21], multi-layered ground[94], and groundwater flow[22] 

have also been presented.  

Numerical and analytical approaches have also been used for short-time models. 

Many numerical models based on finite difference method and finite element 

method with different levels of details have been used for short-time models[28–

30,95].  The analytical models use different approaches to solve the heat transfer 

problem inside the borehole. The most common approach is to represent the 

borehole as a network of resistors and capacitors. Capacitance resistance model 

(CaRM)[32], thermal resistance-capacitance model (TRCM)[33,96], and 

borehole to ground (B2G) model[35,97] are all examples of this approach. Javed 

and Claesson[34] represented the borehole as a thermal network in the Laplace 

domain. Another approach is to model each leg of the BH as an infinite line source 

in a composite medium as presented in[38] and simplified by using a single line 

with equivalent diameter in[98]. The idea of representing the different legs of the 

BH as a single pipe of the equivalent radius is used in many models as this 

simplifies both numerical and analytical solutions. Xu and Spitler[99] and Naldi 

and Zanchini[29] used this approach to simplify numerical models of the BH. 
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Several researchers[16,36,37] used the single pipe of equivalent radius approach 

to finding exact analytical solutions to the heat transfer problem. Recently Rivero 

and Hermanns[39] and Prieto and Cimmino[40] presented transient multipole 

method to solve the two-dimensional heat transfer problem inside the borehole 

without simplifying the geometry of the borehole.  

All the above short-term models consider that the boreholes are grouted, which 

is often not the case in Scandinavia, where boreholes are naturally filled by 

groundwater instead. Most models handle natural convection in groundwater-

filled boreholes by assuming an effective thermal conductivity for water. But 

several studies have shown that natural convection depends on temperature 

[100][101][102]. Hence using a single value for all the conditions is not accurate. 

Spitler et al.[103] presented a correlation between natural convection in the 

annulus and modified the Rayleigh number based on experimental 

measurements to address this issue. However, the authors commented that the 

correlation is not accurate and Johnsson and Adl-Zarrabi[104] demonstrated it 

in their study. Therefore, developing an accurate short-term model for 

groundwater-filled boreholes is still an open problem 

Short-term models can be combined with long-term models by either combining 

the g-functions obtained from the two models or by coupling the two models 

using the conditions at the borehole wall. In the first approach, the g-function 

obtained from the short-term model is used for time scales below a threshold, and 

the g-function from the long-term model is used for time scales above the 

threshold[14,28]. The second approach can either be implemented by a complete 

coupling of the two models[105–107], which is possible if both are numerical 

models, or by using the solutions of the long-term model as the boundary 

condition for the short-term model[42]. 

2.3 Heat Pump Modeling 

Heat pump models can be divided into four groups[108]  

 Balanced energy approach: In this approach, the overall efficiency for the 

whole year is calculated using a few standard operating points.  

 Steady-state models: These models use component-level steady-state 

modeling to represent the heat pumps. The models are based on the 

thermodynamic properties of the refrigerant and the efficiencies of the 

components.  

 Regression models: They use manufacturer or field data to fit 

performance parameters to operating conditions like evaporator and 

condenser temperature.  
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 Dynamic models: They are detailed models that consider the transient 

behavior of the heat pump.  

Dynamic models[109–111] consider the transient properties of a heat pump. The 

transients in a heat pump are much faster than the transients in the BHE or the 

buildings. The transient considerations are only important for time scales of less 

than a few minutes[108]. The balanced energy approach evaluates only the 

seasonal or annual efficiency of heat pumps. Steady-state models and regression 

models are suitable to evaluate the long-term hourly performance of a heat pump. 

Steady-state models[112,113] use simplified refrigeration cycles and the 

efficiencies of the components to obtain performance parameters like the 

compressor power and COP. The steady-state models require the properties of 

the refrigerants and the performance parameters of the components. The 

performance parameters of the components are obtained by calibrating the 

model using experimental data or data provided by the manufacturer[113,114]. 

The assumptions and the uncertainty in the parameters limit the accuracy of 

steady-state models.  

Regression models map the performance of heat pumps (COP/ compressor 

power) to operating conditions, like condenser temperature, evaporator 

temperature, condenser power, etc. The coefficients of the regression models are 

obtained by fitting the models to performance data provided by the 

manufacturers or measured in experimental or actual operation. Regression 

models with different levels of complexity have been used, the bilinear model 

[108] is the simplest model, and ANN models [70,115] are one of the most 

complex models used in literature.  Second-degree polynomials are the most 

common form used in regression models [66,67,116]. Regression models are 

more accurate than steady-state models within the range of the training 

data[73,108]. The main advantage of steady-state models over regression models 

is that they have better performance outside the range of the training data. 

Therefore, when a large amount of data from the actual operation of the heat 

pump is available, regression models are a better choice. 

Several studies have compared the performance of regression models. Lee and 

Lu[68] compared the performance of 6 models using laboratory and field 

measurements from over 1000 heat pumps. They found that the bi-quadratic 

model to be the best among the models. Swider [69] compared six models, 

including two ANN models using experimental data from two heat pumps. The 

ANN models were found to have better performance than other regression 

models. Ruschenburg[117] compared the performance of a biquadratic model 

with a modified quadratic model using field measurements from 5 installations. 

The modified model used a biquadratic model for the interpolation and a linear 
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model for extrapolation. They found that the modified model had a better 

performance than the biquadratic model, but the error in predicting field 

measurements was up to 13%. The deterioration of model performance while 

predicting field measurements was also highlighted by Zhang et al. [72].  They 

compared 13 regression models and found that all the models fit the 

manufacturer's data well, but when the models were used to predict the 

performance of a building, the results from the models had a maximum deviation 

of around 30%. 

2.4 ANN and their application in GSHP 

ANNs are black-box models, i.e., they do not require any knowledge of the 

physical system, that tries to mimic the structure of the brain to identify patterns 

between inputs and outputs.  ANNs use a large number of interconnected 

processing units, called nodes, arranged in layers[118]. Figure 3 shows the 

structure of a fully connected ANN, in which each node is connected to all the 

nodes of the previous layer. A fully connected ANN consists of an input layer, an 

output layer, and one or more hidden layers. Figure 3 represents the processing 

inside a node. The weighted sum of all the inputs to the nodes is transformed 

using a non-linear activation function to calculate the output of the node. The 

weights of the ANN are calculated by training the ANN using training data. ANNs 

with a sufficient number of nodes can approximate any continuous function.  

 

Figure 3: Schematic of (a) an ANN network (b) a single node of an ANN (adopted from Paper III) 

The outputs of an ANN are calculated based on the inputs. Hence, if the output 

depends on a sequence of inputs, the entire sequence of inputs must be used as 

inputs to the ANN. For example, in the case of a BHE, the entire thermal history 

of the BHE must be used as input to calculate the temperature response of the 
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BHE. This implies that the number of inputs should increase as time increases. 

Recurrent neural networks (RNN) are a class of artificial neural networks that 

pass the information from one step to the next to solve this issue. Figure 4 shows 

the architecture of an RNN. At each step, the inputs (xt) and activation from the 

previous step (at-1) are used to calculate the activation of the current step (at), 

which in turn is used to calculate the output (yt). The activation acts as a memory 

to remember the previous inputs. The ability of inputs to influence future outputs 

is limited in an RNN due to vanishing gradients. Therefore, long short-term 

memory (LSTM)[119] and gated recursive units (GRU)[120] were developed to 

retain useful information for a longer time. 

 

Figure 4: Schematic of an RNN (adopted from Paper II) 

The advances in artificial intelligence and increase in the amount of data in the 

past decades have led to an explosion in the application of ANN and other 

machine learning techniques in many fields, including heating and 

cooling[118,121,122]. Esen et al.[123] presented one of the earliest applications of 

ANN in GSHP. They predicted the COP of a GSHP using the inlet and outlet 

temperatures of the condenser and the ground temperature as the input. Esen 

and Inalli[60] presented a similar model for vertical BHE. Other 

studies[61,124,125] have used a similar approach of predicting the overall 

performance of the GSHP instead of using separate models for BHE.  

Chen et al.[126] developed an ANN model to determine the depth of a borehole 

using the hydrothermal properties of the ground and the design operating 

conditions as the input parameters. Arat and Arslan[127] presented an approach 

to optimize a GSHP for district heating using ANN. ANN has also been used to 

predict the properties of the ground using geological data[128,129]. Pasquier et 

al.[62] presented an ANN model to generate short-term g-function and Dusseault 

and Pasquier[130] presented a model for long-term g-function. Gang and 

Wang[63] and Lee et al.[64] presented ANN models of BHE for control of GSHP. 

Both the studies used numerical models to train the ANN.   
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2.5 Optimization of GSHP 

Optimizing the operation of a GSHP can reduce the economic and environmental 

cost of providing heating and/or cooling, especially when there are multiple 

sources of heat. However, due to the complexity of modeling of BHE, most 

attempts to optimize the operation of GSHP use simplified models. Sayyadi and 

Nejatolahi[131] used the genetic algorithm to optimize the operating parameters 

of a cooling tower-assisted GSHP, but they considered the temperature of the 

ground as a constant. Ikeda et al.[46] optimized the load distribution between 

GSHPs, air source heat pump, and auxiliary boiler for periods of one day and one 

week. They used an infinite line source model, which does not consider the short-

term response of a BHE. Sivasakthivel et al.[132] used experiments based on the 

Taguchi method to determine the dependence of GSHP performance on the 

operating parameters and used it to determine the optimal operating parameters.  

Optimizing the operation of a GSHP in the design phase can reduce both 

investment and operation costs. However, the number of parameters to optimize 

is higher in such cases. Therefore, the importance of using simple models is also 

higher. Many studies use a constant ground temperature or a constant COP for 

the GSHP to optimize GSHPs operating with combined cooling and heating 

plant[50,133], solar photovoltaic[133], biomass heat, and power plants[49].  

Miglani et al.[45] represented the ground using a long-term finite line source 

model and the heat pump using an empirical model to optimize the design and 

operation of a system with GSHP, solar photovoltaic, and solar thermal. Despite 

the simplified model, they did not consider loads of the whole year for 

optimization; instead, they used loads for seven representative days. Nouri et al. 

[48]and Reda[47] optimized the design and operation of solar-assisted ground 

source heat pumps in TRNSYS, but they only considered a limited number of 

configurations.  

Detailed models of GSHP that consider short-term and long-term effects of the 

BHE are complex and computationally intensive. Hence, there are a limited 

number of examples of such models. Li et al.[134]presented a GSHP with a 

detailed numerical model for BHE with 15 boreholes and a regression model for 

the heat pump. They showed that increasing the imbalance of the load by 

reducing the heat load would reduce the long-term efficiency of the system. Ruiz-

Calvo et al. [135] presented a GSHP model in TRNSYS with a BHE model that 

considers both short-term and long-term models for BHE[42]. However, these 

models were not used for optimizing the operation of GSHP. Figueroa[43] et al. 

presented a methodology to optimize the long-term operation of a hybrid GSHP 

using a model predictive control approach. However, the approach was applied 

to a simplified case.  
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3 Installation description 

In this thesis, the heating system of the University Hospital buildings in Umeå, 

Sweden, was used as the case study to demonstrate the methods and achieve the 

research objectives. The GSHP system was installed in the hospital in 2016 as a 

supplement to the heat and cold from the district heating and cooling network. 

The GSHP is the primary source of cooling, which supplies around 92% of the 

load. The DH network provides the majority of the heating, and the GSHP 

provides only 15% of the load. Figure 5 (a) and (b) show the heating and cooling 

load of the heating system, respectively. The GSHP system can provide cooling to 

all the buildings at the hospital, but it can only provide heating to 2 buildings due 

to differences in temperature requirements among the buildings. The heat 

demand of the two buildings represents around 30% of the total heat demand.  

 

Figure 5: (a) Heating and (b) Cooling load of the GSHP and DHC network for the hospital area 

The GSHP system is the focus of this thesis. Hence a description of the GSHP 

system and the data collected through motoring of the GSHP is presented in this 

Chapter. Figure 6 shows a schematic of the GSHP system. The main components 
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of the GSHP are a BHE divided into two groups and three heat pumps. The GSHP 

system also consists of some auxiliary components like heat exchangers and 

circulation pumps.  

 

Figure 6: Schematic of the GSHP system at the University Hospital in Umeå 

3.1 BHE description 

In winter, the BHE acts as a source of heat for the heat pump, and in summer, the 

BHE provides free cooling and acts as a sink to the excess heat produced by the 

heat pump. The BHE is divided into two borehole groups with independent fluid 

loops to enable the dual function of the BHE in the summer. Each of the borehole 

groups can be connected to either the cooling circuit or the heating circuit. When 

connected to the cooling circuit, the BHE is used as a heat source or for free 

cooling, and when connected to the heating circuit through HXH, the BHE acts 

as a heat sink. Borehole group A consists of 62 boreholes with a diameter of 14 

cm and a depth of 200 m. Borehole group B consists of 63 boreholes with a 

diameter of 14 cm and a depth of 250 m. The boreholes are arranged as shown in 

Figure 6, with a distance of 7 m between them. The boreholes have a single U-

tube configuration. The boreholes are filled naturally with groundwater, with a 

groundwater level of 10 m. The properties of the ground and the borehole 
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resistance for injection were determined by an in-situ TRT. The properties of the 

ground and a further description of the BHE can be found in Paper I.  

3.2 Heat pump description 

The GSHP system consists of 3 heat pumps. Heat pumps 1 and 2 are the same 

model of heat pump, EMA from the manufacturer EnergyMachines. The 

evaporators of heat pumps 1 and 2 are connected in parallel and provide cooling. 

The condensers of heat pumps 1 and 2 are connected in series to provide heating. 

Heat pumps 1 and 2 have two circuits and four compressors each, two in each 

circuit. Hence, each of the two heat pumps can operate at 0%, 25%, 50%, 75%, 

and 100% capacity. The heat pumps also have a sub-cooler, which is used as a 

heat source for heat pump 3 and as a preheater for domestic hot water. Heat 

pump 3 uses the sub-coolers of heat pumps 1 and 2 as a heat source and provides 

heat for DHW and heating for the coldest days. Heat pump 3 also has two circuits 

but only one compressor in each circuit. The evaporators and condensers of heat 

pump 3 are not connected. Hence the two circuits can be considered as separate 

units.   

3.3 Auxiliary components  

The GSHP consists of three heat exchangers, HXC, HXH, and HXDHW. The HXC 

transfers the cooling from the heat pump to the cooling circuit of the buildings. 

The HXH transfers excess heat in the heating circuit to the BHE. The HXDHW 

has three heat exchangers, two of which pre-heat the cold water using the heat 

from the sub-coolers of heat pumps 1 and 2 and the third heat exchanger transfers 

heat from heat pump 3 to the preheated water to produce DHW.  

The GSHP system also consists of circulation pumps for the cooling circuit, 

heating circuit, and BHE. Each of the heat pumps has a variable speed circulation 

pump for the heating and cooling circuits. The speed of the circulation pumps is 

determined based on the number of compressors operating in the heat pump. 

Borehole groups A and B each have a variable speed circulation pump. When a 

borehole group is connected to the cooling circuit, the circulation pump is 

controlled to minimize the flow through a bypass pipe for the BHE. When a 

borehole group is connected to the heating circuit, the circulation pump is 

controlled such that a set temperature is maintained at the outlet of the heat 

exchanger, HXH.  
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3.4 Modes of Operation  

 

Figure 7: Simplified schematic of the four modes of operation of the GSHP 

The GSHP system has four modes of operation based on the BHE’s connection to 

the system. Figure 7 shows a simplified schematic of the four modes of operation, 

(a) heating with BHE in parallel to HXC, (b) heating with BHE in series to HXC, 

(c) free cooling with active cooling, and (d) active cooling. In winter, the GSHP 

operates in heating with BHE in parallel to HXC mode. In this mode, the heat 

pumps operate to satisfy the heating need, and cooling is a by-product. 3WVC 

directs the cooling required by the building to HXC, and the excess cool is 

extracted by the ground through the BHE. As the cooling load increases in the 

spring, the GSHP changes to heating with BHE in series to HXC.  In this mode, 

the heat pumps are still controlled to satisfy the heating needs, but the BHE can 

be a heat source or provide free cooling. A part of the inlet flow to the BHE comes 

from the outlet flow HXC while the other part comes directly from the evaporator. 

If the temperature at the inlet of the BHE is greater than the ground temperature 

(typically 8 0C), the BHE provides free cooling. In summer, when the demand is 

cooling-dominated, the GSHP operates in free cooling with active cooling mode 
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or only active mode. In free cooling with active cooling mode, borehole group B 

is connected to the cooling circuit in series to HXC to provide free cooling, while 

borehole group A is connected to the heating circuit, and the excess heat from the 

heat pumps is injected into the ground. When all of the excess heat cannot be 

injected into borehole group A alone, the mode changes to only active cooling, in 

which both borehole groups are connected to the heating circuit to inject the 

excess heat into the ground. The transition of GSHP mode from heating with BHE 

in parallel to active cooling as the cooling load increases and vice versa when the 

heating load increases is represented in Figure 8. A detailed description of the 

operation of the GSHP can be found in Paper IV 

 

Figure 8: Illustration of change of modes of the GSHP with a change of heating and cooling loads 

(Adopted from Paper IV)  

3.5 Measured data 

The GSHP has been operational since February 2016. Some of the data, including 

the inlet and outlet temperature of the BHE, were measured from the start of the 

operation. A monitoring system for the entire GSHP was installed in January 

2017, but the flow and energy meters for each of the two borehole groups were 

installed in March 2017. Hence, the complete measured data of the GSHP is 

available from March 2017 to the present day. 

The measured data has many periods of missing or faulty data. Only periods of 

non-faulty data have been used to study the heat pumps and other auxiliary 

components, but to study the BHE, the ground loads for the entire period of 

operation are required due to the dependence of the performance of the BHE on 

historical loads of the ground. The mass flow rate in the BHE is not measured 

until March 2017, hence for the period from February 2016 to March 2017, the 

mass flow rate of the BHE was estimated using the power of the circulation 

pumps, as described in Paper I. In periods of gaps in the measured data, the 

ground loads were estimated based on the ambient temperature.  
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4 Model Description 

Models for the components of the GSHP and a complete GSHP were developed 

in this thesis to achieve RO1. The models developed in this thesis focus on the 

utilization of data from the actual operation of the GSHP system. We 

demonstrated that data from the real operation of a GSHP could be used to 

develop models that are accurate with reasonable computational time, hence 

overcoming the limitations of traditional GSHP models. Multiple years of 

operational data of the GSHP system described in the previous chapter were used 

to develop and validate the models. 

To achieve RO2, two models for the BHE that use the monitored data were 

developed in this thesis, as described in section 4.1. Accurate models of the heat 

pump that use the monitored data (RO3) are described in section 4.2. The BHE 

and heat pump models were used to achieve RO1, i.e., make a model for the whole 

GSHP system, as described in section 4.3. 

4.1 BHE model 

Developing a BHE model that can represent both the short-term and long-term 

response of the BHE accurately is a challenge. In this section, we present two ways 

to use the field measurements to improve the accuracy of BHE models based on 

an analytical model. The analytical model used in this thesis is presented in 

section 4.1.1. A method to calibrate the analytical model, based on Paper I, is 

described in section 4.1.2. In Paper II, a hybrid analytical ANN model was 

developed, as described in section 4.1.3. 

4.1.1 Analytical model 

An analytical model of the BHE was developed based on the model presented by 

Lamarche[20]. An analytical model was chosen as they have lower computational 

time compared to numerical models. The large computational time makes 

numerical models unsuitable for large borehole fields, like the one described in 

Chapter 3. The borehole field has two hydraulic loops that have different inlet 

temperatures during parts of the year. The model by Lamarche[20] was chosen 

for this work since it is one of the few analytical models that can represent a 

borehole field with multiple inlets.  

The model represents the boreholes as finite line sources. The finite line source 

approach assumes a constant load. Hence Lamarche [17] proposed a non-history 

scheme to calculate the effect of a time-varying load. The inside of the borehole is 

represented by a single equivalent resistor in the model.  At every time step, the 
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borehole wall temperature (Tb) of each borehole i was calculated using equation 

1: 

𝑇𝑏,𝑖 = 𝑆𝑝,𝑖 + ∑ 𝑆𝑞,𝑖𝑗𝑋𝑗(𝑇𝑓𝑖𝑛,𝑗 − 𝑇𝑏,𝑗)

𝑛𝑏

𝑗=1

(1) 

Where the first term Sp,i accounts for the effect of historical load on borehole i, 

and the second term accounts for the effect of the current load. Sp,i is updated at 

every step to include the effect of the previous step into the effect of historical 

load. Sq,ij is the temperature response of the borehole i to a load in borehole j. Xj 

is a coefficient to convert heat load to temperature, and Tfin,j is the inlet 

temperature of borehole j.  

The equations for all the Tb were arranged in the form of a matrix equation, 

equation 2, and solved in MATLAB. The heat load and outlet temperature of the 

fluid were calculated using Tb and Tfin . 

𝐴 × 𝑇𝑏 = 𝐵 (2) 

4.1.2 Calibration of the analytical model 

The geometrical attributes of the BHE and the thermal properties of the ground 

are the parameters of the BHE model. The parameter values used in the model 

are listed in Table 1. The geometry of the BHE was obtained from accurate design 

and drilling drawings. The thermal properties of the ground, i.e., k, ρCp, Rb, and 

Tug, were determined using a TRT, which is known to have high uncertainty[53]. 

The uncertainty in the model parameter values, in particular the thermal 

parameter, affects the performance of the BHE model. Therefore, in this thesis, 

we used the measured data to calibrate the thermal parameters of the model to 

improve the performance of the BHE model.  

Table 1: Parameters of the BHE (Adopted from Paper I) 

 Parameter Value 
Geometry Borehole radius (rb) 0.070 m 

Borehole depth (H+D) 200 m/250 m 
Groundwater level (D) 10 m 

Thermal  Thermal conductivity of the ground (k) 3.4 W(mK)-1 

Volumetric heat capacity of the ground 
(ρCp) 

2.3 MJK-1m-3 

Borehole resistance (Rb) 0.08 mKW-1 (0.11 
mKW-1 for extraction) 

Undisturbed ground temperature (Tug) 5.90C 
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The thermal parameters were estimated to minimize the squared deviation 

between the measured and predicted loads of the BHE. The model was calibrated 

using one year of measured data, from March 2017 to March 2018. A model-

independent optimization program called GenOpt [136] was used for the 

minimization. A hybrid optimization algorithm, particle swarm algorithm 

followed by Hooke-Jeeves generalized search algorithm was used to find the 

global minima.  

The parameters obtained from calibration are not accurate values of the thermal 

properties of the ground because the model used for calibration is not perfect. 

Hence, the calibrated parameter values not only compensate for the inaccuracy 

in the thermal properties but also for simplifications in the model. A number of 

factors affect the validity of the assumptions of the model, including the time 

resolution of the data, the season of measured data, and the number of years the 

BHE has been operational.  

The model uses a simplified, single equivalent thermal resistor model to 

represent the inside of the borehole. Hence it is not accurate in the short time 

scale. The model also ignores the variation of heat flux in the vertical direction, 

which makes it less accurate in large time scales. Therefore, changing the time 

resolution of the model in the calibration period can affect the values of the 

calibrated parameters. Hence, it can influence the accuracy of the calibrated 

model. Therefore, we calibrated the parameters using three different time 

resolutions, 30-day, 1-day, and 6-hour, and tested each of the calibrated 

parameter values to simulate the BHE at four different time resolutions, 30-day, 

1-day, 6-hour, and 1-hour.  

 The properties of the ground are affected by the weather; for example, 

groundwater flow and groundwater level can affect the properties of the ground. 

Moreover, in groundwater-filled boreholes, the temperature and load of the BHE 

affect Rb, both of which change with the season. Therefore, we divided the 

calibration data into six seasons, four 4-month long periods, corresponding to the 

seasons, winter, spring, summer, and fall, and injection period when heat is 

injected into the ground and extraction period when heat is extracted from the 

ground. We tested if using different parameters for different seasons improves 

the accuracy of the model. 

The analytical model does not consider the axial variation of heat flux in the 

borehole, due to which the interaction between the borehole is underestimated in 

the long term (in the time scale of years)[137]. Re-calibrating the model at regular 

intervals can reduce the effect of this assumption. We used a 2×3 BHE at 
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Universitat Politècnica de València (UPV), with 10 years of field measurements 

[55,138] to test this. We tested the accuracy of the model by calibrating the BHE 

model just once and by re-calibrating the model every year. 

4.1.3 Hybrid BHE Model 

The analytical model represents the inside of the borehole as a single equivalent 

thermal resistor, i.e., it ignores the thermal capacity of the borehole. The thermal 

capacity of the borehole has a significant influence while predicting the 

performance of BHE with a time resolution in the order of an hour or smaller. 

Hence, the model is not suitable for hourly simulations.   

ANN models can use the monitored data to represent complex relationships 

between the inputs and outputs. Therefore, ANN models can include the effects 

of natural convection in the borehole, groundwater flow, heterogeneous ground, 

etc., which are hard to include in analytical models. ANN models are also 

computationally efficient[62,64]. However, to accurately determine the output, 

all the variables that affect the outputs must be included in the set of inputs. Due 

to the large heat capacity of the ground, the performance of the BHE is affected 

by the entire thermal history of the ground. Therefore, selecting inputs of an ANN 

model that can consider the long-term performance of a BHE is challenging.  

Paper II presents a hybrid analytical-ANN model to overcome the shortcomings 

of both the analytical and ANN model. The hybrid model uses the analytical 

model with a time resolution of 24-hours to include the effects of historical loads 

on the BHE and an ANN model with inlet temperatures and mass-flow rates of 

the last 24 hours to include the effects of the recent operation of the BHE.   

The outputs of the analytical model, borehole wall temperatures (BHATbana and 

BHBTbana), and power (BHAPana and BHBPana) of each borehole group are 

included as inputs to the ANN model to combine the two models. The 24-hour 

thermal history of the BHE is included in the model by including measured inlet 

temperatures and mass flow rates as inputs. To limit the number of inputs, the 

24-hour thermal history was divided into six 1-hour steps and one 18-hour step. 

The outputs of the analytical model are updated every 24 hours. Therefore, the 

current time step t can be 1 to 24 hours after the last step of the analytical model. 

This information is provided to the ANN model by introducing the number of 

hours after the last analytical step, Naa, as an input to the ANN model. There is a 

total of 37 inputs to the ANN model, as shown in Figure 9. the power of each 

borehole group at time t (BHAPt and BHBPt) were chosen as the outputs of the 

model.  
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Figure 9: Inputs and outputs of the ANN model for BHE represented on a timeline (adopted from 

Paper II) 

The initial model had 37 inputs, 2 outputs, and one hidden layer with 27 nodes. 

Data from January 2017 to July 2020 was used for training, validation, and 

testing of the model. The first two years of data were used for training, and the 

next one year was used for validation, and the rest was used for testing. The model 

was trained using the Levenberg-Marquardt (LM) algorithm.  

A number of measures were used to improve the performance of the model. An 

ensemble of networks was used instead of a single one to improve the accuracy 

and reduce the overfitting of the ANN. The ensemble of networks is shown to have 

a lower error than the best of individual networks. The error reduces with the 

number of networks in the ensemble, but the improvement was negligible after a 

certain number of networks.  

The number of hidden nodes was selected based on the validation error. The 

validation error decreases with an increase in the number of nodes until a certain 

point. Further increase in the number of hidden nodes will increase the validation 

error. This is because the model overfits the training data. Therefore, the model 

with the least validation error was chosen.  

The thermal history was divided into six hours of non-aggregated steps and one 

18 hour aggregated step. Increasing the number of non-aggregated steps 

increases the number of input nodes. Hence choosing the number of non-

aggregated steps is similar to choosing the number of nodes in the input layer. 

Therefore, the number of non-aggregated steps was chosen using the validation 

error. Different optimization algorithms were also tested. 
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4.2 Heat pump model 

The aim of this section is to develop an accurate model for a heat pump that uses 

the monitored data (RO3). The use of data-driven models for heat pumps is a 

common practice.  However, most models are based on using the performance 

data from the manufacturer; consequently, the models are simple regression 

models that can be trained using a limited number of data points. The real 

operating condition is usually different from the ideal conditions used to generate 

data by the manufacturer. Hence, we can expect the models trained on data from 

the manufacturer to have lower accuracy when representing the real operation. 

Using measured data from real operations can improve the performance of heat 

pump models. 

In Paper III, we compared the performance of five regression models and two 

ANN models trained using data from the manufacturer and measured data from 

the real operation. The accuracy of models trained using manufacturer’s data was 

compared to the accuracy of models trained using the measured data. The 

comparison also shows which models are more suited when only manufacturer’s 

data is available (in the design phase) and when measured data is available (in 

the operation phase). In Paper IV, we presented an ANN model to represent the 

three heat pumps in the GSHP system as a single unit, as described in section 

4.2.2   

4.2.1 Individual models 

Heat pumps 1 and 2 (HP1&2) are the same type of heat pump. Therefore, both the 

heat pumps were represented using the same model. Heat pump 3 (HP3) operates 

only to produce domestic hot water, and on the coldest days, therefore it has fewer 

hours of measured data. However, the two circuits operate independently; hence, 

to increase the number of points, the two circuits were considered separate heat 

pumps.  

Five regression models and two ANN models were tested. Table 2 shows the list 

of models. The regression models approximate the COP of the heat pump using 

polynomials with a different number of terms. The coefficients of the terms are 

estimated using the data. The simplest regression model considered in this thesis 

is the bilinear model with 4 terms, and the most complex is the multivariate 

polynomial model with 9 terms.  Two ANN models were considered, one with two 

inputs and the other with three inputs. Both the ANN models had one hidden 

layer with five nodes and one output, COP.  
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Table 2: Models used for comparison (Adopted from Paper III) 

All seven models were trained using the manufacture’s data (manu_fit) and the 

measured data (meas_fit). The manufacturer (EnergyMachines) provided full 

load performance data for every combination of evaporator temperature and 

condenser temperature within its operating range. Measured data from April 

2017 to March 2019 were used in this study. The measured data was divided into 

two subsets, and one was used to train the meas_fit models and the other for 

testing both manu_fit and meas_fit models. One year of data from April 2017 to 

April 2018 was used as training data for HP1 &2, and the rest was used for testing. 

The reason for this distribution was to cover the full range of operation of HP1&2 

in the training data and evaluate the ability of the model to predict future 

performance. The measured data for HP3 was scattered over time, so 50% of the 

measured data was randomly selected as training data.  

The two ANN models used were simple models with two or three inputs. Simple 

models were chosen so that they can be compared with other regression models. 

However, ANNs are flexible models that can easily be improved to better utilize 

the measured data. The input, outputs, and architecture of the ANN can be 

modified according to the available data. A systematic method to improve the 

ANN model was presented in Paper IV. Three measures to improve the accuracy 

of the ANN models were tested, including additional explanatory variables in the 

Model Equation Inputs 

Bilinear 𝐶𝑂𝑃 = (𝑏0 + 𝑏𝑇𝐸) × (𝑏2 + 𝑏𝑇𝐸) TC, TE 

Biquadratic 1 1

𝐶𝑂𝑃
= 𝑏0 + 𝑏1

1

𝑄𝐶
+ 𝑏2𝑄𝐶 + 𝑏3

𝑇𝑐

𝑄𝑐
+ 𝑏4

𝑇𝑐
2

𝑄𝑐
+ 𝑏5𝑇𝐶 +

𝑏6𝑄𝐶 𝑇𝐶 + 𝑏7𝑇𝐶
2 + 𝑏8𝑄𝐶 𝑇𝐶

2  

TC, QC 

Biquadratic 2 𝑄𝐶 = 𝑏𝑞1 + 𝑏𝑞2𝑇𝐸 + 𝑏𝑞3𝑇𝐶 + 𝑏𝑞4𝑇𝐸𝑇𝐶 + 𝑏𝑞5𝑇𝐸
2

+ 𝑏𝑞6𝑇𝐶
2 

𝑃 = 𝑏𝑝1 + 𝑏𝑝2𝑇𝐸 + 𝑏𝑝3𝑇𝐶 + 𝑏𝑝4𝑇𝐸𝑇𝐶 + 𝑏𝑝5𝑇𝐶
2

+ 𝑏𝑝6𝑇𝐶
2 

𝐶𝑂𝑃 = 𝑄𝐶/𝑃 

TC, TE 

Multivariate 

Polynomial 

𝐶𝑂𝑃 = 𝑏0 + 𝑏1𝑄𝐶 + 𝑏2𝑇𝐸 + 𝑏3𝑇𝐶 + 𝑏4𝑄𝐶
2 +

𝑏5𝑇𝐸
2 + 𝑏6𝑇𝐶

2 + 𝑏7𝑄𝑐𝑇𝐸 + 𝑏8𝑄𝐶𝑇𝐸 + 𝑏9𝑇𝐸𝑇𝐶   

TC, TE, 

QC 

ASHRAE 1

𝐶𝑂𝑃
= 𝑏0 + 𝑏1

(𝑇𝐶 − 𝑇𝐸)

𝑄𝐶

+ 𝑏2

(𝑇𝐶 − 𝑇𝐸)2

𝑄𝐶

+ 𝑏3

1

𝑄𝐶

+ 𝑏4𝑄𝐶 + 𝑏5(𝑇𝐶 − 𝑇𝐸) 

TC, TE, 

QC 

Neural Network 

2 (NN_2)  

- TC, TE 

Neural Network 

3 (NN_3) 

- TC, TE, 

QC 
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model, changing the output variable, and increasing the number of nodes in the 

hidden layer.  

Five additional explanatory variables were considered to include the effect of the 

partial operation, the effect of the sub-cooler, and the COP from the 

manufacturer’s data into the model. The fraction of time the compressors are 

switched on (UTr), and the ratio of actual condenser power to design condenser 

power (Qcr) was used to consider the partial operation. The operation of the sub-

cooler was represented by sub-cooler power (QSC) and sub-cooler temperature 

(TSC). The inputs were added to the NN_3 model using greedy forward selection. 

At each iteration, the best input among the variables considered was added to the 

ANN model. The process is stopped when the improvement in the accuracy of the 

ANN model in an iteration is below a threshold. 

COP was used as the output of the NN_3 model to compare it with other 

regression models. However, using compressor power as the output also conveys 

the same information since COP can be calculated from compressor power and 

Qc. Therefore we tested if changing the output from COP to compressor power 

affected the accuracy of the ANN model. Increasing the number of hidden nodes 

will increase the variability of the ANN model. Hence it can represent more 

complex relationships between inputs and outputs. Therefore, the number of 

nodes was increased until the ANN model was observed to overfit the training 

data. 

4.2.2 Combined model 

Paper III shows that ANN models can accurately represent heat pumps when field 

measurements are available. Paper III also shows that ANN models are flexible 

and can represent complex heat pumps if the right inputs are chosen. Therefore, 

a single ANN model represented all three heat pumps in Paper IV. This reduced 

the complexity of the overall system as the distribution of load among the heat 

pumps was not explicitly specified. The total compressor power (CompPower) 

and the mass flow rate of the cooling circuit of the heat pumps (HPCoolmf), which 

is determined by the number of compressors on, were chosen as outputs of the 

ANN model.  

The power of the heat pumps is determined by the heating load and cooling load 

in heating mode and cooling mode, respectively. Therefore, ANN models with 

different inputs were used for heating and cooling mode. The inputs of the 

heating mode model are heat produced by the heat pump (HPHeatPower), 

HPHeatTout, DHWPower, DWHTout, HPCoolTin, and mode number, which is 

number to represent the mode of the GSHP. The cooling mode model uses 

HPCoolPower instead of HPHeatPower as input. 
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The data from May 2017 to April 2021 was used to develop the model. 70% of the 

data was used to training the models, 15% was used for validation, and the rest 

was used for testing. The procedure for choosing the architecture of the ANN 

model was similar to the ANN models for individual heat pumps, i.e., the number 

of nodes was increased until the model was observed to overfit the training data.  

4.3 GSHP system model 

The hybrid BHE model and the combined heat pump model were used to develop 

a model for the entire GSHP system (RO1). The heating and cooling loads and the 

temperature requirements were the inputs to the model. The operation of the 

GSHP system was simulated, assuming a balance of power in the heating and 

cooling circuits at each 1-hour time step. The configuration of the heating and 

cooling circuit depends on the mode of the GSHP system. Therefore, at each time 

step, the mode of the GSHP system was determined, and the mass and power 

balance equations corresponding to the mode were used. The operating cost of 

the GSHP was calculated using the compressor power (CompPower), and the 

long-term stability of the ground was determined using the power of the BHE 

(BHP). Therefore, CompPower and BHP were the most important outputs of the 

model. 

The GSHP system model also needed a model for the heat exchanger in the 

cooling circuit, i.e., HXC. An empirical model based on the log mean temperature 

difference (LMTD) approach was used for HXC. The coefficients of the model 

were determined by fitting the empirical relation to the field measurements.  

In both the heating modes, the BHE is connected to the cooling circuit. In the free 

cooling with active cooling mode, borehole group A is connected to the heating 

circuit while borehole group B is connected to the cooling circuit. In the active 

cooling mode, both the borehole groups are connected to the heating circuit. 

Hence three different algorithms were used to calculate the GSHP model for the 

three different configurations of the GSHP. The algorithms are shown in Figure 

10. All three algorithms use an initial guess for HPCoolTin and run the 

component models of the GSHP to calculate the residual of the power balance 

equation for the cooling circuit. The HPCoolTin value is then adjusted based on 

the residual value. This process is repeated until the residual power balance is 

below a threshold.  The algorithm for free cooling with active cooling mode has 

an additional initial guess value of HPCoolPower. Hence, an additional criterion 

that the outlet temperature from the cooling side of the heat pump (CoolTin) 

matches the required cooling temperature calculated using the heat exchanger 

model is added.  
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Figure 10: Flowchart for GSHP model in (a) heat modes (b) free cooling with active cooling mode 

and (c) active cooling mode (Adopted from Paper IV) 

The mode of the GSHP system at each time step was determined based on the 

operation at the previous time step. The mode was changed if certain criteria were 

satisfied. The criteria for changing of mode was similar to the criteria in real 

operation, as described in Paper IV, except for active cooling mode. The 

temperature of the BHE was observed to increase over the years. Hence the 

operator of the GSHP manually changed the mode to active cooling mode for a 

few days in summers after 2019. Therefore, the active cooling mode was used in 

the simulation when the GSHP was observed to be operating in active cooling 

mode in real operation.   
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5 Operation Optimization  

This chapter describes the method to achieve RO4, i.e., optimize the operation of 

a customer’s GSHP operating in parallel to a DHC network. The optimal 

operation scheme was determined using one year of operation of the GSHP 

system. The loads and temperature requirements of the GSHP were calculated as 

the average of the four years of measured data. The optimization aimed to find a 

sustainable operation scheme with a minimal yearly operating cost of heating and 

cooling the building.  For the operation to be sustainable in the long term, the 

ground temperature must be relatively stable, which was defined as a change of 

less than 10c in 50 years.  The cost of heating the building was considered from 

the perspective of the energy company (Umeå Energi AB). The cost of district 

heating, district cooling, and electricity for the GSHP were included. 

The marginal variable production cost was used for the optimization, i.e., the cost 

of producing the extra energy for heating and cooling of the area. The cost of 

producing district heating and cooling using the least preferred production unit 

operating at a particular time was considered as the marginal cost of district 

heating and cooling, respectively. The production cost and information about the 

production units operating at each hour were provided by the energy company.  

The cost of fuel, taxes and transmission losses were considered in the cost 

calculation. Since marginal electricity comes from the regional grid, i.e., it is not 

produced by the energy company. Hence, the cost of buying electricity from the 

regional grid was considered as the marginal cost of electricity. Taxes and 

transmission costs were added to the production cost.    

One year of operation with the existing scenario was first simulated to establish a 

baseline for comparison with other scenarios. The inputs for the simulation, i.e., 

loads and temperature requirements, were calculated as the average of the four 

years of measured data. CompPower from the model was used to calculate the 

hourly electricity load. The district heating and cooling loads were also calculated 

as the average of the four years. The loads, along with the hourly cost of electricity, 

district heating, and district cooling, were used to calculate the total cost of energy 

production. The monthly average power of the BHE for one year was calculated 

using the simulated BHP. To estimate the long-term effect of imbalance in the 

load, the monthly average load was repeated 50 times. The change in temperature 

of the ground over 50 years was estimated using the analytical model.   

An operation scenario to minimize the cost was simulated. To minimize the cost, 

the least expensive source of heating or cooling was used at each time step. The 

GSHP cannot replace a part of the district heating load due to the higher 

temperature requirement of some of the buildings in the area. Hence only the 
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part of district heating that can be replaced by the GSHP was considered in this 

analysis. The GSHP system uses electricity to provide both heating and cooling, 

but the power of the heat pump is decided by the dominant load. Reducing the 

power of the heat pump up to a certain point will only reduce either heating or 

cooling provided by the GSHP system. Therefore, the cost of providing the 

dominant load was compared with district heating or cooling. If the 

heating/cooling from the GSHP system was cheaper, the GSHP was operated at 

maximum capacity or to satisfy both heating and cooling demands (max mode). 

Otherwise, the GSHP was operated at a power at which both heating and cooling 

from the GSHP are utilized (base mode). 

In the optimal scenario, the cost must be minimized while maintaining a stable 

temperature in the ground. To make the operation of the BHE balanced, the 

threshold for switching between max and base modes was modified. An 

additional cost ϵ was introduced to the GSHP system cost. The criteria for the 

GSHP system to operate in max mode was changed to:  

 Heating mode, 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑙𝑒𝑐𝑟𝑡𝑖𝑐𝑖𝑡𝑦

𝐶𝑂𝑃𝐻𝑒𝑎𝑡
+ 𝜖 < 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 ℎ𝑒𝑎𝑡𝑖𝑛𝑔                       (3) 

Cooling mode, 

 
𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑙𝑒𝑐𝑟𝑡𝑖𝑐𝑖𝑡𝑦

𝐶𝑂𝑃𝐶𝑜𝑜𝑙
− 𝜖 < 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 𝑐𝑜𝑜𝑙𝑖𝑛𝑔                       (4) 
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6 Summary of Results  

This chapter presents the main results of the thesis obtained using the methods 

described in chapters 4 and 5. The performance of the models developed to 

achieve RO1, RO2 and RO3 are presented in section 6.1, and the results of 

optimization of operation of the GSHP are presented in section 6.2.  

6.1 Models of GSHP using monitored data 

Section 6.1.1 presents the results of the two approaches used to improve BHE 

models using the field measurements. Section 6.1.2 presents results of heat pump 

models that use field measurements 

6.1.1 BHE Model 

6.1.1.1 Calibration of the model 

The performance of the BHE was simulated for the period from February 2016 to 

February 2019 with a time resolution of one day. The root mean square (RMS) 

deviation between the measured and simulated load of the uncalibrated model 

was 85 kW, which is 22.3% of the absolute average load. The simplification of the 

physical phenomenon by the model, uncertainty in the model parameters, and 

uncertainty in the measured data are some of the reasons for the deviation. 

 

Figure 11: Measured load, deviation of the uncalibrated model, and deviation of the calibrated model 

(adopted from Paper I) 

Figure 11 shows the measured load along with the deviation of the uncalibrated 

(Deviation TRT) and the calibrated model (Deviation fitted). Calibration reduced 

the RMS deviation from 85 kW to 52kW. However, it was observed that the 
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estimated properties were outside the uncertainty range of the measured values. 

This shows that the calibrated values are compensating for imperfections in the 

model. The calibrated model parameters must not be considered as accurate 

values of the thermal properties of the ground.  

The model parameters were calibrated using three different time resolutions for 

the model, 30 days, 1 day, and 6 hours. The calibrated parameters were used to 

simulate the performance of the BHE with a time resolution of 30 days, 1-day, 6-

hours, and 1-hour. The results showed that parameters from 1 day and 6-hour 

time resolution were similar, with similar RMS deviation for all four time 

resolutions. The parameters from the 30-day time resolution were different from 

the other two, and the RMS deviation of the model using the model parameters 

was higher. This indicates that the 30-day time step is too large to accurately 

differentiate the effects of each parameter. However, a time resolution of 1 day 

can be sufficient to differentiate the effects of each parameter using the analytical 

model. Hence using a time resolution of 1 day for calibration was recommended. 

The calibration data was divided into four 4-month long periods and two seasons 

for extraction and injection to test if using a different set of parameters for 

different seasons improves the performance of the BHE model. Two different 

scenarios were tested, using four sets of parameters for four seasons and using 

two different sets of parameters for extraction and injection. The RMS deviation 

was 51 kW and 50 kW while using four and two sets of parameters, respectively. 

Therefore, using different sets of parameters for injection and extraction reduced 

the deviation. In the initial analytical model, different Rb values were used for 

injection and extraction, but the value for Rb for extraction was obtained by 

adding a constant value to the Rb value for injection, which is a common practice 

in Sweden. However, the results indicate that this method is not sufficient to 

account for the difference in ground properties for injection and extraction. 

A BHE with 10 years of monitored data was used to check if recalibrating the 

model parameters every year improves the performance of the BHE model. The 

uncalibrated model had an RMS deviation of 27%. Calibrating the model once 

after 4 years of operation reduced the error to 23 % while recalibrating the model 

every year after the 4th year reduced the error to 21%, indicating that recalibrating 

the model every year improves the model accuracy. 

6.1.1.2 Hybrid model 

The relative RMSE of the initial hybrid model was 3.2%, 6.1%, and 7.3% for 

training, validation, and testing, respectively. The overall model had a relative 

RMSE of 4.9%, which is significantly lesser than the analytical model or the 

calibrated analytical model.  Table 3 shows the result of various measures to 

improve the hybrid model.  
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Table 3: Result of improvement measures to the hybrid model 

Improvement 
measures 

Value 
selected 

Relative RMSE (%) 

Training  Validation Testing 

Initial model   3.20 6.1 7.3 

Ensemble 15 ANNs 2.7 5.9 6.7 

No of hidden nodes 45 nodes 2.4 5.6 6.3 

Optimization algorithm LM 2.4 5.6 6.3 
No of non-aggregated 
steps 6 steps 2.4 5.6 6.3 

 The performance of the final model was compared with the performance of the 

analytical model, the calibrated analytical model, and three different types of 

neural network models.  

The moving average of the analytical model calibrated analytical model and the 

hybrid model is shown in Figure 12. The hybrid model clearly performs better 

than the other two models. The RMSE of the hybrid model for 2020 is 6.3% 

compared to 21.9% for the analytical model and 13.9% for the calibrated 

analytical model. The computational time of the hybrid model was also 

significantly lower than the analytical model, 15 minutes compared to 5 hours.  

 

Figure 12: 30-day moving average of relative RMSE of the analytical model, calibrated analytical 

model, and the hybrid model (adopted from Paper II) 
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The hybrid model was also compared to a regular ANN model, a recursive neural 

network (RNN) model, and a gated recursion unit (GRU) model. Figure 13 shows 

the comparison of the moving RMSE of the models.  The hybrid model has the 

lowest RMSE among the models. The RMSE for the testing period is 6.3%, 13.4%, 

12.5%, and 13% for the hybrid model, the ANN model, the RNN model, and the 

GRU model, respectively. Hence, the hybrid model performs better than both 

analytical and ANN models in this study.  

 

Figure 13: 30-day moving average of relative RMSE of the RNN model, GRU model, ANN model, 

and  hybrid model (adopted from Paper II) 

The hybrid model was used in the model of the GSHP system since it is clearly 

better than the other models tested. Two minor changes were made to the hybrid 

model to make it more suitable for the GSHP system model. Firstly, since the 

model was already validated and more measured data were available, 80% of the 

data from May 2017 to April 2021 was used for training, and the other 20% was 

used for validation. Secondly, the best model was used instead of an ensemble of 

15 models to decrease the computational time to the model. The relative MAE of 

the updated model was 4.24% compared to 3.54% of the model from Paper II.  

6.1.2 Heat pump model 

6.1.2.1 Comparison of models 

All 7 models were trained on the data from the manufacturer and the data from 

actual operation. As expected, the manu_fit models had a lower training error 

than mes_fit models. The error for HP3 is higher than HP1&2 since HP3 has a 
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larger operating range than HP1&2. Among the manu_fit models, the NN_3 

model has the least training error, 0.2% for HP1&2 and 0.6% for HP3, and the 

biquadratic 1 model has the least training error among the regression models, 

0.5% for HP1&2 and 3.0% for HP3. The NN_3 model also has the lowest training 

error among mes_fit models, 5.2% HP1&2 and 7.1% for HP3. The range of 

training RMSE among the models is much higher for manu_fit (0.2%-20.6%) 

compared to meas_fit (5.2%-8.9%); this implies that the choice of model is not 

important for meas_fit, indicating that the error in meas_fit models is not due to 

the choice of function to represent the relationship between the inputs and 

outputs but due to variables not considered in the models. 

The testing error of the models is shown in Figure 14. The error of the meas_fit 

models is lower than the manu_fit models since the training and testing data for 

the meas_fit model are similar. Among the manu_fit models, the bilinear model, 

which is the simplest model, has the least error while more complex models like 

the NN_3 model and multivariate polynomial models perform poorly. This 

indicates that in the design phase when limited data is available, it is better to use 

simple models since more complicated models are more likely to overfit the data, 

which may not be representative of the real operation. The NN_3 model has the 

least testing relative RMSE among the meas_fit models, 6.4% for HP1&2 and 

7.5% for HP3. Indicating that when measured data from the actual operation is 

available, more complex models, like ANN models, are better at utilizing the data 

to deduce accurate relationships between inputs and outputs 
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Figure 14: Relative testing errors of the models for (a) HP1&2 and (b)HP3 (adopted from Paper III) 

6.1.2.2 Improvement of ANN model  

The ANN model was first improved by adding more inputs to the NN_3 model. 

Five inputs were tested, UTr, Qcr, QSC, TSC, and COPmanu. The best inputs were 

sequentially added to the model until the improvement in the model was below a 

threshold. Two different thresholds were used, 1% and 0.1%. Two models for 

HP1&2 and HP3 were selected based on the two thresholds. ANN models with 

four inputs, TE, TC, QC, and QSC (NN_4QSC), and five inputs, TE, TC, QC, QSC, and 

TSC (NN_5QSCTSC), were selected for HP1&2 and the NN_3 model and NN_4QSC 

were selected for HP3. The NN_4QSC and NN_5QSCTSC models for HP1&2 had 

testing relative RMSE of 4.9% and 4.6%, respectively. The testing relative RMSE 

of models for HP3, NN_3, and NN_4QSC were 7.5% and 7%, respectively.  
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The outputs of the four selected models were changed from COP to compressor 

power. Changing the output did not improve the models for HP1&2, but the 

models for HP3 improved significantly. The training error of the NN_3 with 

compressor power as output (NN_3PO) was reduced to 4.8%, and the training 

error for  NN_4QSCPO was 4.6%. Hence, NN_3PO and NN_4QSCPO were selected 

for further improvements.  

In the next step to improve the model, the number of nodes in the hidden layer 

was varied for the four selected models, and the architecture with the least 

training error was selected. An architecture with 15 hidden nodes was selected for 

NN_4 QSC, and architectures with 10 hidden nodes were selected for the other 

three models. The testing error of NN_4QSC, NN_5QSCTSC, NN_3PO and 

NN_4QSCPO were 4.6%, 4.5%, 4.4% and 4.3% respectively. The testing error of 

all four models were less than 5% 

The results of this section demonstrate that ANN models can accurately represent 

the behavior of heat pumps. The results also highlight the importance of the 

choice of inputs and output for an ANN model.  

6.1.2.3 Combined model 

The number of nodes was chosen based on the normalized validation error of 

both the outputs, i.e., CompPower and HPCoolmf. An architecture with two 

hidden layers with 35 nodes in each layer was chosen for the heating mode model, 

and two hidden layers with 30 nodes in each layer were chosen for the cooling 

mode model. 

The relative MAE of the heating mode model was 3.7% for CompPower and 3.1% 

for HPCoolmf, and for the cooling model, the relative MAE were 4.29%  and 3.2% 

for  CompPower and HPCoolmf, respectively. The results of the two models were 

combined by using the heating mode model during the heating season and the 

cooling mode model during the cooling season. The relative MAE of the complete 

model was 3.77% and 3.31% for CompPower and HPCoolmf, respectively. 

6.1.3 GSHP model 

The model of the GSHP system was validated using 4 years of measured data from 

May 2017 to April 2021. The main outputs of the model were CompPower and 

BHP. The simulation time for 4 years of the hourly simulation was around 9 hours 

on a standard computer. Figure 15 shows the moving average of measured and 

simulated CompPower along with the deviation between the two. The relative 

MAE for CompPower was 7.3%.  



 

39 

 

Figure 15: 30-day moving average of measured power, simulated power, and deviation of 

CompPower (adopted from Paper IV) 

Figure 16 shows the moving average of measured and simulated BHP and the 

deviation between the measured and simulated values. The relative MAE of BHP 

is 19.1%, and the average measured heat extracted from the ground was 47 kW 

higher than the simulated value. The MAE is around 4.5 times higher than the 

MAE of the individual model for BHE.  This indicates that the error in BHP is not 

due to the BHE model but due to an error in other components of the GSHP 

system. Three possible reasons for the error were explained in Paper IV. Firstly, 

the model for HXC had low accuracy, with an RMSE of 17.6% in determining the 

value of U×A. Secondly, since the actual modes of operation of the GSHP system 

were not recorded, determining accurate criteria to classify the modes was a 

challenge. Thirdly, since a steady-state model was used for the simulation, it was 

assumed that the GSHP system followed the control objectives. However, 

examples of the control objective not being followed were observed from the 

measured values.  

-50

0

50

100

150

200

250

300

350

May-17 Dec-17 Jun-18 Jan-19 Aug-19 Feb-20 Sep-20 Mar-21

C
o

m
p

P
o

w
er

/D
ev

ia
ti

o
n

(k
W

)

Simulated Measured Deviation



 

40 

 

Figure 16: 30-day moving average of measured power, simulated power, and deviation of BHE 

power (adopted from Paper IV) 

The results indicate that the GSHP system model is a good representation of the 

real system, even though there is room for improvement in the GSHP model.  

6.2 Operation Optimization 

The present operational scenario was simulated for 1 year using the average of 4 

years of measured data as inputs to the model. The district heating and cooling 

loads were also calculated as the average of the 4 years. In the present scenario, 

54.4% of the heating load and 91.6 % of the cooling load were provided by the 

GSHP system, while the rest is provided by the district heating and cooling 

network. Note that only the part of the heating load that can be replaced by the 

GSHP was considered in this study. The annual marginal cost of the energy 

company for providing heating and cooling for the buildings was 322 t€. The 

marginal CO2 was 1220 tons.  A 50-year simulation of the ground using the BHP 

load from the simulation showed that the temperature of the ground would 

increase by 120C if the operation scheme were not changed. 

In the minimal cost scenario, the cheaper of the two alternatives, GSHP or district 

heating/cooling, is used at each time step without considering the long-term 

stability of the ground. The operational cost of heating and cooling the buildings 

was reduced by 69 t€, and the CO2 emissions were reduced by 175 tons in this 

scenario. However, this operational scenario is not sustainable since the average 

borehole wall temperature was shown to reduce by 240C in 50 years for this 

scenario.  
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In the optimal scenario, the criteria for choosing between base and max mode for 

the GSHP system was changed to equations 3 and 4. Since there was a reduction 

in temperature in the minimal cost scenario, the heat extracted from the BHE in 

the heating mode must be decreased, and the heat injected into the BHE in 

cooling mode must be increased. Therefore, ϵ must have a positive value. The 

value ϵ was varied using trial and error until the change in average borehole wall 

temperature (ΔTb) after 50 years of operation was less than 10C. Figure 17 shows 

the variation of ΔTb after 50 years and the annual savings in operation cost with 

a change in ϵ. The black lines mark the acceptable range of ΔTb after 50 years. 

 

Figure 17: Variation of change in Tb after 50 years of operation and annual savings with ϵ along 

with acceptable limits for ΔTb after 50 years (adopted from Paper IV) 

 

The ϵ value of 7.5 €/MWh was chosen for the optimal case. The annual cost of 

operation was reduced by 64 t€, and the annual CO2 was reduced by 92 tons in 

the optimal case, while the ΔTb after 50 years was less than 10C. Figure 18 shows 

the moving average of the percentage of heating and cooling loads satisfied by the 

GSHP system. 69.6% of the heating load and 96.8% of the cooling load of the 

buildings were covered by the GSHP system in the optimal scenario.   
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Figure 18: Moving average of the percentage of heating and cooling loads covered by the GSHP 

(adopted from Paper IV) 
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7 Discussion 

GSHPs can be used to store both heat and cold for long periods. Additionally, due 

to their connection to the electrical network, they also provide the option of 

storing excess energy in the electrical network from renewable sources like solar 

and wind in the form of heat or cold. Hence, GSHP can provide flexibility to the 

energy system. This thesis demonstrates the benefits of proper utilization of the 

flexibility provided by GSHPs. The results show that improvement in the 

operation of GSHP is economically beneficial and can extend the lifetime of the 

GSHP. Therefore justifying the need for accurate models for GSHPs in operation.   

The models developed in this thesis use field measurements to represent the 

GSHP accurately. The results show that the hybrid model for BHE and the ANN 

model for the heat pumps are accurate. Hence, these models are important 

contributions of the thesis. The models can be adopted in various applications 

including fault detection and optimization of other GSHPs.  

The performance of the models presented in this thesis is influenced by the 

quantity and quality of data available. Therefore, to gain a better understanding 

of the capabilities of the models they need to be tested on different sets of field 

measurements. A limitation of data-driven models is the deterioration of 

performance when the inputs are out of bounds of the training data.  Hence, the 

models can be applied to a wider variety of problems by studying the 

deterioration of models while extrapolating and identifying methods to reduce 

the deterioration.  

In this thesis, the GSHP model is used to optimize the load distribution between 

the GSHP and the DHC network. The optimization method minimizes the cost at 

each time step while introducing a penalty to ensure the long-term stability of the 

ground. This simple method of considering the long-term stability of the ground 

in optimization is a contribution of this thesis that can be applied to optimize the 

operation of any hybrid GSHP. However, this method has some limitations that 

can be addressed in future studies. For example, the heating and cooling demand 

and the cost of production were calculated based on historical data. The change 

in demand and production in the coming years can be considered in future 

studies. In the present method, the best heating and cooling option for the current 

time step is determined based on the current cost and the long-term stability of 

the ground. This approach simplifies the optimization problem to a single 

variable problem. However, a lower operation cost can be achieved if the load 

distribution of all the time steps is determined simultaneously or by using a 

moving time horizon. Future studies can explore such optimization methods. 

Adjusting the load distribution between the GSHP and the DHC network is not 
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the only way to optimize the operation of the heating and cooling system.  Future 

studies can also explore other options to improve the operation, like changing the 

control strategy or set points of the GSHP, connecting more buildings to the 

GSHP system, adding more heating/cooling capacity to the GSHP, etc.  

The cost of heating and cooling the hospital buildings was optimized from the 

perspective of the energy company, but the GSHP system belongs to the hospital.  

Hence to minimize the cost of production, the energy company must cooperate 

with the hospital. The results presented in this thesis can help to convert the 

hospital from a consumer to prosumer. However, the task of determining the 

exact terms of cooperation for such prosumers is challenging and should be 

addressed in further studies. 
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9 Conclusion 

This thesis demonstrates that operating a customer’s GSHP system in a district 

heating and cooling network in cooperation with the energy company benefits 

both the building owner and the energy company. We developed models for 

GSHP and its components that utilize the field measurements to accurately 

represent the GSHP system. The models were used to achieve the objective of 

minimizing the cost of producing energy for heating and cooling of the area while 

ensuring a sustainable operation of the GSHP system.  

Two approaches to improve the accuracy of an analytical model of BHE were 

presented. In the first approach, the thermal parameters of the analytical model 

were calibrated. Calibration of the parameters reduced the relative RMSE from 

22% to 14%. The second approach used a hybrid analytical-ANN model. The 

hybrid model had a relative RMSE of 6.3% for the testing period and 

computationally it was 20 times faster than the analytical model. Therefore, the 

hybrid model was chosen to represent the BHE. 

The performance of seven data-driven models for heat pumps were compared to 

show that ANN models are suitable when measured data from the actual 

operation is available. Hence ANN models were used to represent the heat pumps 

in the model of the GSHP system. A single ANN model was used to represent all 

three heat pumps of the GSHP system, which simplified the model. The ANN 

model for the heat pumps had a relative RMSE of 3.8% when simulating 

compressor power.  

The hybrid BHE model and the ANN model for heat pumps were used in the 

GSHP system model. The model was validated using 4 years of measured data. 

The MAE for compressor power and the power of the BHE was 7.3% and 19.1%, 

respectively.  

A method to determine the optimal load distribution between the GSHP system 

and the DHC network using the GSHP system model was presented. In optimal 

operation, the annual cost of operation for the energy company could be reduced 

by 64 t€ compared to the existing scenario and the ground temperature could be 

stable. The CO2 emissions could be reduced by 92 tons per year in the optimal 

scenario.  

This thesis shows that the cost and CO2 production of the energy company can be 

reduced through a customer’s GSHP. Therefore the energy company could 

consider a GSHP system as an asset in the DHC network and cooperate with the 

building owner to benefit from it. The building owners can also benefit from the 
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cooperation by ensuring the sustainability of the GSHP and by developing a 

prosumer relationship with the energy company. This thesis has contributed to 

the field of GSHPs and DHC by developing methods to determine the optimal 

operation of such systems and by developing models that are required for 

optimization.     



 

47 

Acknowledgments 

This thesis is a result of a supportive environment and a great deal of assistance 

received during my Ph.D. I would like to thank everyone, directly and indirectly, 

involved in the project.  

Firstly, I thank my supervisors’ Thomas Olofsson, Staffan Andersson, and Ronny 

Östin for their constant encouragement and brilliant guidance. It would be 

impossible to navigate through the Ph.D. without their advice and support.  

I am grateful to Umeå Energi AB., Jörgen Carlsson in particular, for providing 

insights into the working of a DHC network and for providing the data on the 

production of DHC. I also express my gratitude to Region Västerbotten and 

Instituto Universitario de Investigación de Ingeniería Energética at Universitat 

Politècnica de València for providing measured data from their respective GSHP 

systems. I thank Kristofer Linder and Jesper Burlin for taking the time to explain 

the working of the GSHP system at the University Hospital in Umeå. I am grateful 

to EnergyMachines for providing information about GSHP installation at Umeå.  

I would like to thank Zonghua Gu for his insights and suggestions in the 

development of the neural network models 

I thank everybody at the Department of Applied Physics and Electronics for 

providing an engaging and fun work environment. I thank Helena, Ismael, 

Ramtin, Antonio, Naresh, Ola, Mark, Jimmy, Hongxia, and especially Shoaib for 

their companionship and Fika room discussions. I am grateful to the 

administrative staff, Christer Rönnqvist, Robert Sjöblom, Leif Johansson, Helena 

Glenge, Maria Rönnberg, and Martina Sundling for their vital support. 

I thank my colleagues at Industrial Doctoral School, especially Ivan Riumkin, for 

providing feedback on my research from different perspectives. I would like to 

acknowledge the incredible effort from Benkt Wiklund and other staff members 

at Industrial Doctoral School in the planning and organization of various events 

at Industrial Doctoral School. 

I am forever indebted to my parents and my sister for their love and support. I 

thank my mother for keeping my spirits high throughout my Ph.D. I thank Usha 

aunty for her feedback on my thesis. I thank Akshara for listening to me ramble 

on about my work.   

Industrial Doctoral School at Umeå University and Umeå Energi AB. are 

gratefully acknowledged for their financial support. 



 

48 

References 

1.  Fleiter, T.; Steinbach, J.; Ragwitz, M.; Dengler, J.; Köhler, B.; Reitze, F.; 
Tuille, F.; Hartner, M.; Kranzl, L.; Forthuber, S. Mapping and analyses of 
the current and future (2020-2030) heating/cooling fuel deployment 
(fossil/renewables). Eur. Comm. Dir. Energy 2016. 

2.  Eurostat: Renewable Energy for Heating and Cooling Available online: 
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-
20200211-1 (accessed on Aug 2, 2021). 

3.  European Commission An EU Strategy on Heating and Cooling, 
COM(2016) 51 Final; Brussels, Belgium, 2016; 

4.  Connolly, D.; Lund, H.; Mathiesen, B.V.; Werner, S.; Möller, B.; Persson, 
U.; Boermans, T.; Trier, D.; Østergaard, P.A.; Nielsen, S. Heat Roadmap 
Europe: Combining district heating with heat savings to decarbonise the 
EU energy system. Energy Policy 2014, 65, 475–489. 

5.  David, A.; Mathiesen, B.V.; Averfalk, H.; Werner, S.; Lund, H. Heat 
roadmap Europe: large-scale electric heat pumps in district heating 
systems. Energies 2017, 10, 578. 

6.  Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; 
Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH): 
Integrating smart thermal grids into future sustainable energy systems. 
Energy 2014, 68, 1–11. 

7.  Werner, S. District heating and cooling in Sweden. Energy 2017, 126, 
419–429. 

8.  Gehlin, S.; Andersson, O.; Rosberg, J.-E. Country Update for Sweden 
2020. In Proceedings of the Proceedings, World Geothermal Congress 
2020; 2020. 

9.  Åberg, M.; Fälting, L.; Lingfors, D.; Nilsson, A.M.; Forssell, A. Do ground 
source heat pumps challenge the dominant position of district heating in 
the Swedish heating market? J. Clean. Prod. 2020, 254, 120070. 

10.  Le Truong, N.; Gustavsson, L. Costs and primary energy use of heating 
new residential areas with district heat or electric heat pumps. Energy 
Procedia 2019, 158, 2031–2038. 

11.  Kontu, K.; Vimpari, J.; Penttinen, P.; Junnila, S. Individual ground source 
heat pumps: Can district heating compete with real estate owners’ return 
expectations? Sustain. Cities Soc. 2020, 53, 101982. 



 

49 

12.  Averfalk, H.; Ingvarsson, P.; Persson, U.; Gong, M.; Werner, S. Large heat 
pumps in Swedish district heating systems. Renew. Sustain. Energy Rev. 
2017, 79, 1275–1284. 

13.  Carvalho, A.D.; Moura, P.; Vaz, G.C.; de Almeida, A.T. Ground source heat 
pumps as high efficient solutions for building space conditioning and for 
integration in smart grids. Energy Convers. Manag. 2015, 103, 991–
1007. 

14.  Li, M.; Li, P.; Chan, V.; Lai, A.C.K. Full-scale temperature response 
function (G-function) for heat transfer by borehole ground heat 
exchangers (GHEs) from sub-hour to decades. Appl. Energy 2014, 136, 
197–205, doi:https://doi.org/10.1016/j.apenergy.2014.09.013. 

15.  Zeng, H.Y.; Diao, N.R.; Fang, Z.H. A finite line‐ source model for 
boreholes in geothermal heat exchangers. Heat Transf. Res. Co‐
sponsored by Soc. Chem. Eng. Japan Heat Transf. Div. ASME 2002, 31, 
558–567. 

16.  Lamarche, L.; Beauchamp, B. New solutions for the short-time analysis of 
geothermal vertical boreholes. Int. J. Heat Mass Transf. 2007, 50, 1408–
1419, doi:10.1016/J.IJHEATMASSTRANSFER.2006.09.007. 

17.  Lamarche, L. A fast algorithm for the hourly simulations of ground-source 
heat pumps using arbitrary response factors. Renew. Energy 2009, 34, 
2252–2258, doi:10.1016/j.renene.2009.02.010. 

18.  Marcotte, D.; Pasquier, P. Fast fluid and ground temperature computation 
for geothermal ground-loop heat exchanger systems. Geothermics 2008, 
37, 651–665, doi:10.1016/j.geothermics.2008.08.003. 

19.  Cimmino, M.; Bernier, M. A semi-analytical method to generate g-
functions for geothermal bore fields. Int. J. Heat Mass Transf. 2014, 70, 
641–650, doi:10.1016/j.ijheatmasstransfer.2013.11.037. 

20.  Lamarche, L. Mixed arrangement of multiple input-output borehole 
systems. Appl. Therm. Eng. 2017, 124, 466–476, 
doi:10.1016/j.applthermaleng.2017.06.060. 

21.  Bandos, T. V; Montero, A.; Fernandez, E.; Santander, J.L.G.; Isidro, J.M.; 
Perez, J.; de Cordoba, P.J.F.; Urchueguia, J.F. Finite line-source model 
for borehole heat exchangers: effect of vertical temperature variations. 
Geothermics 2009, 38, 263–270, 
doi:10.1016/j.geothermics.2009.01.003. 

22.  Molina-Giraldo, N.; Blum, P.; Zhu, K.; Bayer, P.; Fang, Z.H. A moving 
finite line source model to simulate borehole heat exchangers with 



 

50 

groundwater advection. Int. J. Therm. Sci. 2011, 50, 2506–2513, 
doi:10.1016/j.ijthermalsci.2011.06.012. 

23.  Eskilson, P. Thermal analysis of heat extraction boreholes, Lund Inst. of 
Tech. (Sweden). Dept. of Mathematical Physics: Lund, Sweden, 1987. 

24.  Priarone, A.; Fossa, M. Temperature response factors at different 
boundary conditions for modelling the single borehole heat exchanger. 
Appl. Therm. Eng. 2016, 103, 934–944, 
doi:10.1016/j.applthermaleng.2016.04.038. 

25.  Monzó, P. Modelling and monitoring thermal response of the ground in 
borehole fields, Kungliga Tekniska högskolan: Stockholm, Sweden, 2018. 

26.  Naldi, C.; Zanchini, E. A new numerical method to determine isothermal 
g-functions of borehole heat exchanger fields. Geothermics 2019, 77, 
278–287. 

27.  Belzile, P.; Lamarche, L.; Rousse, D.R. Semi-analytical model for 
geothermal borefields with independent inlet conditions. Geothermics 
2016, 60, 144–155, doi:10.1016/j.geothermics.2015.12.008. 

28.  Yavuzturk, C.; Spitler, J.D. A short time step response factor model for 
vertical ground loop heat exchangers. Ashrae Trans. 1999, 105, 475–485. 

29.  Naldi, C.; Zanchini, E. A one-material cylindrical model to determine 
short-and long-term fluid-to-ground response factors of single U-tube 
borehole heat exchangers. Geothermics 2020, 86, 101811. 

30.  Yu, X.; Li, H.; Yao, S.; Nielsen, V.; Heller, A. Development of an efficient 
numerical model and analysis of heat transfer performance for borehole 
heat exchanger. Renew. Energy 2020, 152, 189–197. 

31.  Hellström, G. Ground heat storage thermal analysis of duct storage 
systems. Part I. Theory. Sweden PhD. thesis, Univ. Lund 1991. 

32.  Zarrella, A.; Scarpa, M.; De Carli, M. Short time step analysis of vertical 
ground-coupled heat exchangers: The approach of CaRM. Renew. Energy 
2011, 36, 2357–2367, doi:https://doi.org/10.1016/j.renene.2011.01.032. 

33.  Pasquier, P.; Marcotte, D. Short-term simulation of ground heat 
exchanger with an improved TRCM. Renew. Energy 2012, 46, 92–99, 
doi:10.1016/J.RENENE.2012.03.014. 

34.  Javed, S.; Claesson, J. New Analytical and Numerical Solutions for the 
Short-term Analysis of Vertical Ground Heat Exchangers. Ashrae Trans. 
2011, Vol 117, Pt 1 2011, 117, 3–12. 



 

51 

35.  De Rosa, M.; Ruiz-Calvo, F.; Corberán, J.M.; Montagud, C.; Tagliafico, 
L.A. A novel TRNSYS type for short-term borehole heat exchanger 
simulation: B2G model. Energy Convers. Manag. 2015, 100, 347–357, 
doi:https://doi.org/10.1016/j.enconman.2015.05.021. 

36.  Young, T.R. Development, verification, and design analysis of the 
borehole fluid thermal mass model for approximating short term borehole 
thermal response 2004. 

37.  Lamarche, L. Short-time analysis of vertical boreholes, new analytic 
solutions and choice of equivalent radius. Int. J. Heat Mass Transf. 2015, 
91, 800–807, 
doi:https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.135. 

38.  Li, M.; Lai, A.C.K. New temperature response functions (G functions) for 
pile and borehole ground heat exchangers based on composite-medium 
line-source theory. Energy 2012, 38, 255–263, 
doi:10.1016/J.ENERGY.2011.12.004. 

39.  Rivero, J.M.; Hermanns, M. Enhanced multipole method for the transient 
thermal response of slender geothermal boreholes. Int. J. Therm. Sci. 
2021, 164, 106531. 

40.  Prieto, C.; Cimmino, M. Transient multipole expansion for heat transfer 
in ground heat exchangers. Sci. Technol. Built Environ. 2020, 27, 253–
270. 

41.  Rees, S.J.; He, M.M. A three-dimensional numerical model of borehole 
heat exchanger heat transfer and fluid flow. Geothermics 2013, 46, 1–13, 
doi:10.1016/j.geothermics.2012.10.004. 

42.  Ruiz-Calvo, F.; De Rosa, M.; Monzó, P.; Montagud, C.; Corberán, J.M. 
Coupling short-term (B2G model) and long-term (g-function) models for 
ground source heat exchanger simulation in TRNSYS. Application in a 
real installation. Appl. Therm. Eng. 2016, 102, 720–732, 
doi:https://doi.org/10.1016/j.applthermaleng.2016.03.127. 

43.  Figueroa, I.C.; Cimmino, M.; Helsen, L. A Methodology for Long-Term 
Model Predictive Control of Hybrid Geothermal Systems: The Shadow-
Cost Formulation. Energies 2020, 13. 

44.  Huang, J.; Fan, J.; Furbo, S. Demonstration and optimization of a solar 
district heating system with ground source heat pumps. Sol. Energy 
2020, 202, 171–189. 

45.  Miglani, S.; Orehounig, K.; Carmeliet, J. Integrating a thermal model of 
ground source heat pumps and solar regeneration within building energy 



 

52 

system optimization. Appl. Energy 2018, 218, 78–94. 

46.  Ikeda, S.; Choi, W.; Ooka, R. Optimization method for multiple heat 
source operation including ground source heat pump considering 
dynamic variation in ground temperature. Appl. Energy 2017, 193, 466–
478. 

47.  Reda, F. Long term performance of different SAGSHP solutions for 
residential energy supply in Finland. Appl. Energy 2015, 144, 31–50. 

48.  Nouri, G.; Noorollahi, Y.; Yousefi, H. Designing and optimization of solar 
assisted ground source heat pump system to supply heating, cooling and 
hot water demands. Geothermics 2019, 82, 212–231. 

49.  Zhang, X.; Li, H.; Liu, L.; Bai, C.; Wang, S.; Song, Q.; Zeng, J.; Liu, X.; 
Zhang, G. Optimization analysis of a novel combined heating and power 
system based on biomass partial gasification and ground source heat 
pump. Energy Convers. Manag. 2018, 163, 355–370. 

50.  Zeng, R.; Li, H.; Jiang, R.; Liu, L.; Zhang, G. A novel multi-objective 
optimization method for CCHP–GSHP coupling systems. Energy Build. 
2016, 112, 149–158. 

51.  Mogensen, P. Fluid to duct wall heat transfer in duct system heat storages. 
Doc. Counc. Build. Res. 1983, 652–657. 

52.  Gehlin, S. Thermal response test: in situ measurements of thermal 
properties in hard rock, Luleå tekniska universitet: Luleå, Sweden, 1998. 

53.  Witte, H.J.L. Error analysis of thermal response tests. Appl. Energy 2013, 
109, 302–311, doi:10.1016/j.apenergy.2012.11.060. 

54.  Hellström, G.; Sanner, B.; Klugescheid, M.; Gonka, T.; Mårtensson, S. 
Experiences with the borehole heat exchanger software EED. Proc. 
Megastock 1997, 97, 247–252. 

55.  Ruiz-Calvo, F.; Cervera-Vazquez, J.; Montagud, C.; Corberan, J.M. 
Reference data sets for validating and analyzing GSHP systems based on 
an eleven-year operation period. Geothermics 2016, 64, 538–550, 
doi:10.1016/j.geothermics.2016.08.004. 

56.  Naiker, S.S.; Rees, S.J. Monitoring and performance analysis of a large 
non-domestic ground source heat pump installation.; CIBSE, 2011. 

57.  Kim, S.-K.; Bae, G.-O.; Lee, K.-K.; Song, Y. Field-scale evaluation of the 
design of borehole heat exchangers for the use of shallow geothermal 
energy. Energy 2010, 35, 491–500. 



 

53 

58.  Tordrup, K.W.; Poulsen, S.E.; Bjorn, H. An improved method for 
upscaling borehole thermal energy storage using inverse finite element 
modelling. Renew. Energy 2017, 105, 13–21, 
doi:10.1016/j.renene.2016.12.011. 

59.  Fernandez, M.; Eguia, P.; Granada, E.; Febrero, L. Sensitivity analysis of 
a vertical geothermal heat exchanger dynamic simulation: Calibration and 
error determination. Geothermics 2017, 70, 249–259, 
doi:10.1016/j.geothermics.2017.06.012. 

60.  Esen, H.; Inalli, M. Modelling of a vertical ground coupled heat pump 
system by using artificial neural networks. Expert Syst. Appl. 2009, 36, 
10229–10238. 

61.  Sun, W.; Hu, P.; Lei, F.; Zhu, N.; Jiang, Z. Case study of performance 
evaluation of ground source heat pump system based on ANN and ANFIS 
models. Appl. Therm. Eng. 2015, 87, 586–594. 

62.  Pasquier, P.; Zarrella, A.; Labib, R. Application of artificial neural 
networks to near-instant construction of short-term g-functions. Appl. 
Therm. Eng. 2018, 143, 910–921, 
doi:10.1016/j.applthermaleng.2018.07.137. 

63.  Gang, W.; Wang, J. Predictive ANN models of ground heat exchanger for 
the control of hybrid ground source heat pump systems. Appl. Energy 
2013, 112, 1146–1153. 

64.  Lee, D.; Ooka, R.; Ikeda, S.; Choi, W. Artificial neural network prediction 
models of stratified thermal energy storage system and borehole heat 
exchanger for model predictive control. Sci. Technol. Built Environ. 2019, 
25, 534–548. 

65.  Underwood, C. On the design and response of domestic ground-source 
heat pumps in the UK. Energies 2014, 7, 4532–4553. 

66.  Shu, H.; Duanmu, L.; Shi, J.; Jia, X.; Ren, Z.; Yu, H. Field measurement 
and energy efficiency enhancement potential of a seawater source heat 
pump district heating system. Energy Build. 2015, 105, 352–357. 

67.  Afjei, T.; Wetter, M. Compressor heat pump including frost and cycle 
losses. Model Descr. Implement. into TRNSYS, Ingenieurschule HTL 
1997. 

68.  Lee, T.-S.; Lu, W.-C. An evaluation of empirically-based models for 
predicting energy performance of vapor-compression water chillers. Appl. 
Energy 2010, 87, 3486–3493. 



 

54 

69.  Swider, D.J. A comparison of empirically based steady-state models for 
vapor-compression liquid chillers. Appl. Therm. Eng. 2003, 23, 539–
556, doi:https://doi.org/10.1016/S1359-4311(02)00242-9. 

70.  Bechtler, H.; Browne, M.W.; Bansal, P.K.; Kecman, V. Neural networks—
a new approach to model vapour‐ compression heat pumps. Int. J. 
Energy Res. 2001, 25, 591–599. 

71.  Arcaklioğlu, E.; Erişen, A.; Yilmaz, R. Artificial neural network analysis of 
heat pumps using refrigerant mixtures. Energy Convers. Manag. 2004, 
45, 1917–1929. 

72.  Zhang, Y.; Cui, C.; Yuan, J.; Zhang, C.; Gang, W. Quantification of model 
uncertainty of water source heat pump and impacts on energy 
performance. In Proceedings of the IOP Conference Series: Earth and 
Environmental Science; IOP Publishing, 2019; Vol. 238, p. 12067. 

73.  Carbonell Sánchez, D.; Cadafalch Rabasa, J.; Pärlisch, P.; Consul 
Serracanta, R. Numerical analysis of heat pumps models: comparative 
study between equation-fit and refrigerant cycle based models. In 
Proceedings of the Solar energy for a brighter future: book of proceedings: 
EuroSun 2012; 2012. 

74.  Lucia, U.; Simonetti, M.; Chiesa, G.; Grisolia, G. Ground-source pump 
system for heating and cooling: Review and thermodynamic approach. 
Renew. Sustain. Energy Rev. 2017, 70, 867–874. 

75.  Aresti, L.; Christodoulides, P.; Florides, G. A review of the design aspects 
of ground heat exchangers. Renew. Sustain. Energy Rev. 2018, 92, 757–
773. 

76.  Sanner, B. Ground Source Heat Pumps–history, development, current 
status, and future prospects. In Proceedings of the Proceedings of 12th 
IEA Heat Pump Conference (paper K. 2.9.).; Rotterdam, 2017; pp. 1–14. 

77.  Dehghan, B.; Wang, L.; Motta, M.; Karimi, N. Modelling of waste heat 
recovery of a biomass combustion plant through ground source heat 
pumps-development of an efficient numerical framework. Appl. Therm. 
Eng. 2020, 166, 114625. 

78.  Kang, S.; Li, H.; Lei, J.; Liu, L.; Cai, B.; Zhang, G. A new utilization 
approach of the waste heat with mid-low temperature in the combined 
heating and power system integrating heat pump. Appl. Energy 2015, 
160, 185–193. 

79.  Nouri, G.; Noorollahi, Y.; Yousefi, H. Solar assisted ground source heat 
pump systems–A review. Appl. Therm. Eng. 2019, 163, 114351. 



 

55 

80.  Monzo, P.; Mogensen, P.; Acuna, J.; Ruiz-Calvo, F.; Montagud, C. A novel 
numerical approach for imposing a temperature boundary condition at 
the borehole wall in borehole fields. Geothermics 2015, 56, 35–44, 
doi:10.1016/j.geothermics.2015.03.003. 

81.  Cimmino, M.; Bernier, M.; Adams, F. A contribution towards the 
determination of g-functions using the finite line source. Appl. Therm. 
Eng. 2013, 51, 401–412. 

82.  Hellström, G.; Sanner, B. Software for dimensioning of deep boreholes for 
heat extraction. Proc. Calorstock 1994, 94, 195–202. 

83.  Spitler, J.D. GLHEPRO-A design tool for commercial building ground 
loop heat exchangers. In Proceedings of the Proceedings of the fourth 
international heat pumps in cold climates conference; Citeseer, 2000. 

84.  Monzó, P.; Puttige, A.R.; Acuña, J.; Mogensen, P.; Cazorla, A.; Rodriguez, 
J.; Montagud, C.; Cerdeira, F. Numerical modeling of ground thermal 
response with borehole heat exchangers connected in parallel. Energy 
Build. 2018, 172, doi:10.1016/j.enbuild.2018.04.057. 

85.  Al-Khoury, R.; Kölbel, T.; Schramedei, R. Efficient numerical modeling of 
borehole heat exchangers. Comput. Geosci. 2010, 36, 1301–1315. 

86.  Lee, C.K.; Lam, H.N. A modified multi-ground-layer model for borehole 
ground heat exchangers with an inhomogeneous groundwater flow. 
Energy 2012, 47, 378–387. 

87.  Luo, J.; Rohn, J.; Bayer, M.; Priess, A.; Xiang, W. Analysis on performance 
of borehole heat exchanger in a layered subsurface. Appl. Energy 2014, 
123, 55–65. 

88.  Yang, H.; Cui, P.; Fang, Z. Vertical-borehole ground-coupled heat pumps: 
A review of models and systems. Appl. Energy 2010, 87, 16–27, 
doi:https://doi.org/10.1016/j.apenergy.2009.04.038. 

89.  Lamarche, L.; Beauchamp, B. A new contribution to the finite line-source 
model for geothermal boreholes. Energy Build. 2007, 39, 188–198, 
doi:10.1016/j.enbuild.2006.06.003. 

90.  Lazzarotto, A. A network-based methodology for the simulation of 
borehole heat storage systems. Renew. Energy 2014, 62, 265–275, 
doi:10.1016/j.renene.2013.07.020. 

91.  Marcotte, D.; Pasquier, P. Unit-response function for ground heat 
exchanger with parallel, series or mixed borehole arrangement. Renew. 
Energy 2014, 68, 14–24, doi:10.1016/j.renene.2014.01.023. 



 

56 

92.  Cimmino, M. A finite line source simulation model for geothermal 
systems with series- and parallel-connected boreholes and independent 
fluid loops. J. Build. Perform. Simul. 2018, 11, 414–432, 
doi:10.1080/19401493.2017.1381993. 

93.  Lazzarotto, A.; Björk, F. A methodology for the calculation of response 
functions for geothermal fields with arbitrarily oriented boreholes–Part 2. 
Renew. energy 2016, 86, 1353–1361. 

94.  Abdelaziz, S.L.; Ozudogru, T.Y.; Olgun, C.G.; Martin II, J.R. Multilayer 
finite line source model for vertical heat exchangers. Geothermics 2014, 
51, 406–416. 

95.  Yavuzturk, C.; Spitler, J.D. Field validation of a short time step model for 
vertical ground-loop heat exchangers/Discussion. ASHRAE Trans. 2001, 
107, 617. 

96.  Bauer, D.; Heidemann, W.; Müller-Steinhagen, H.; Diersch, H.-J.G. 
Thermal resistance and capacity models for borehole heat exchangers. Int. 
J. Energy Res. 2011, 35, 312–320, doi:10.1002/er.1689. 

97.  Cazorla-Marín, A.; Montagud-Montalvá, C.; Tinti, F.; Corberán, J.M. A 
novel TRNSYS type of a coaxial borehole heat exchanger for both short 
and mid term simulations: B2G model. Appl. Therm. Eng. 2020, 164, 
114500. 

98.  Wei, J.; Wang, L.; Jia, L.; Zhu, K.; Diao, N. A new analytical model for 
short-time response of vertical ground heat exchangers using equivalent 
diameter method. Energy Build. 2016, 119, 13–19, 
doi:https://doi.org/10.1016/j.enbuild.2016.02.055. 

99.  Xu, X.; Spitler, J.D. Modeling of vertical ground loop heat exchangers with 
variable convective resistance and thermal mass of the fluid. In 
Proceedings of the Proceedings of the 10th International Conference on 
Thermal Energy Storage. Ecostock; 2006. 

100.  Gustafsson, A.-M.; Gehlin, S. Influence of natural convection in water-
filled boreholes for GCHP. In Proceedings of the ASHRAE Transactions; 
2008; Vol. 114 PART 1, pp. 416–423. 

101.  Kjellsson, E.; Hellström, G. Laboratory study of the heat transfer in a 
water-filled borehole with a single U-pipe. In Proceedings of the 
Megastock 1997 The 7th international conference on thermal energy 
storage. Sapporo, Japan; 1997; pp. 509–514. 

102.  Gustafsson, A.-M.; Westerlund, L. Multi-injection rate thermal response 
test in groundwater filled borehole heat exchanger. Renew. Energy 2010, 



 

57 

35, 1061–1070, doi:https://doi.org/10.1016/j.renene.2009.09.012. 

103.  Spitler, J.D.; Javed, S.; Ramstad, R.K. Natural convection in groundwater-
filled boreholes used as ground heat exchangers. Appl. Energy 2016, 164, 
352–365. 

104.  Johnsson, J.; Adl-Zarrabi, B. Modelling and evaluation of groundwater 
filled boreholes subjected to natural convection. Appl. Energy 2019, 253, 
113555. 

105.  Florides, G.A.; Christodoulides, P.; Pouloupatis, P. An analysis of heat 
flow through a borehole heat exchanger validated model. Appl. Energy 
2012, 92, 523–533, doi:10.1016/j.apenergy.2011.11.064. 

106.  Esen, H.; Inalli, M.; Esen, Y. Temperature distributions in boreholes of a 
vertical ground-coupled heat pump system. Renew. Energy 2009, 34, 
2672–2679, doi:https://doi.org/10.1016/j.renene.2009.04.032. 

107.  Lee, C.K.; Lam, H.N. Computer simulation of borehole ground heat 
exchangers for geothermal heat pump systems. Renew. Energy 2008, 33, 
1286–1296, doi:https://doi.org/10.1016/j.renene.2007.07.006. 

108.  Underwood, C.P. 14 - Heat pump modelling. In; Rees, S.J.B.T.-A. in G.-
S.H.P.S., Ed.; Woodhead Publishing, 2016; pp. 387–421 ISBN 978-0-08-
100311-4. 

109.  Sami, S.M.; Dahmani, A. Numerical prediction of dynamic performance 
of vapour-compression heat pump using new HFC alternatives to HCFC-
22. Appl. Therm. Eng. 1996, 16, 691–705, 
doi:https://doi.org/10.1016/1359-4311(95)00075-5. 

110.  Koury, R.N.N.; Machado, L.; Ismail, K.A.R. Numerical simulation of a 
variable speed refrigeration system. Int. J. Refrig. 2001, 24, 192–200, 
doi:https://doi.org/10.1016/S0140-7007(00)00014-1. 

111.  Browne, M.W.; Bansal, P.K. Transient simulation of vapour-compression 
packaged liquid chillers. Int. J. Refrig. 2002, 25, 597–610, 
doi:https://doi.org/10.1016/S0140-7007(01)00060-3. 

112.  Corberán, J.M.; Gonzálvez, J.; Montes, P.; Blasco, R. ‘ART’a computer 
code to assist the design of refrigeration and A/C equipment. 2002. 

113.  Cimmino, M.; Wetter, M. Modelling of heat pumps with calibrated 
parameters based on manufacturer data. In Proceedings of the 
Proceedings of the 12th International Modelica Conference, Prague, Czech 
Republic, May 15-17, 2017; 2017; pp. 219–226. 



 

58 

114.  Jin, H. Parameter estimation based models of water source heat pumps 
2002. 

115.  Swider, D.J.; Browne, M.W.; Bansal, P.K.; Kecman, V. Modelling of 
vapour-compression liquid chillers with neural networks. Appl. Therm. 
Eng. 2001, 21, 311–329. 

116.  Baik, Y.-J.; Kim, M.; Chang, K.-C.; Lee, Y.-S.; Ra, H.-S. Potential to 
enhance performance of seawater-source heat pump by series operation. 
Renew. Energy 2014, 65, 236–244, 
doi:https://doi.org/10.1016/j.renene.2013.09.021. 

117.  Ruschenburg, J.; Ćutić, T.; Herkel, S. Validation of a black-box heat pump 
simulation model by means of field test results from five installations. 
Energy Build. 2014, 84, 506–515. 

118.  Yang, K.-T. Artificial neural networks (ANNs): a new paradigm for 
thermal science and engineering. J. Heat Transfer 2008, 130. 

119.  Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural 
Comput. 1997, 9, 1735–1780, doi:10.1162/neco.1997.9.8.1735. 

120.  Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; 
Schwenk, H.; Bengio, Y. Learning phrase representations using RNN 
encoder-decoder for statistical machine translation. arXiv Prepr. 
arXiv1406.1078 2014. 

121.  Mohanraj, M.; Jayaraj, S.; Muraleedharan, C. Applications of artificial 
neural networks for refrigeration, air-conditioning and heat pump 
systems—a review. Renew. Sustain. energy Rev. 2012, 16, 1340–1358. 

122.  Zhou, S.; Liu, D.; Cao, S.; Liu, X.; Zhou, Y. An application status review of 
computational intelligence algorithm in GSHP field. Energy Build. 2019, 
203, 109424, doi:https://doi.org/10.1016/j.enbuild.2019.109424. 

123.  Esen, H.; Inalli, M.; Sengur, A.; Esen, M. Performance prediction of a 
ground-coupled heat pump system using artificial neural networks. 
Expert Syst. Appl. 2008, 35, 1940–1948, 
doi:10.1016/j.eswa.2007.08.081. 

124.  Fannou, J.-L.C.; Rousseau, C.; Lamarche, L.; Kajl, S. Modeling of a direct 
expansion geothermal heat pump using artificial neural networks. Energy 
Build. 2014, 81, 381–390. 

125.  Park, S.K.; Moon, H.J.; Min, K.C.; Hwang, C.; Kim, S. Application of a 
multiple linear regression and an artificial neural network model for the 
heating performance analysis and hourly prediction of a large-scale 



 

59 

ground source heat pump system. Energy Build. 2018, 165, 206–215, 
doi:https://doi.org/10.1016/j.enbuild.2018.01.029. 

126.  Chen, S.; Mao, J.; Chen, F.; Hou, P.; Li, Y. Development of ANN model for 
depth prediction of vertical ground heat exchanger. Int. J. Heat Mass 
Transf. 2018, 117, 617–626. 

127.  Arat, H.; Arslan, O. Optimization of district heating system aided by 
geothermal heat pump: A novel multistage with multilevel ANN 
modelling. Appl. Therm. Eng. 2017, 111, 608–623. 

128.  Kalogirou, S.A.; Florides, G.A.; Pouloupatis, P.D.; Christodoulides, P.; 
Joseph-Stylianou, J. Artificial neural networks for the generation of a 
conductivity map of the ground. Renew. Energy 2015, 77, 400–407, 
doi:https://doi.org/10.1016/j.renene.2014.12.033. 

129.  Zhang, Y.; Zhou, L.; Hu, Z.; Yu, Z.; Hao, S.; Lei, Z.; Xie, Y. Prediction of 
layered thermal conductivity using artificial neural network in order to 
have better design of ground source heat pump system. Energies 2018, 
11, 1896. 

130.  Dusseault, B.; Pasquier, P. Efficient g-function approximation with 
artificial neural networks for a varying number of boreholes on a regular 
or irregular layout. Sci. Technol. Built Environ. 2019, 25, 1023–1035. 

131.  Sayyadi, H.; Nejatolahi, M. Thermodynamic and thermoeconomic 
optimization of a cooling tower-assisted ground source heat pump. 
Geothermics 2011, 40, 221–232. 

132.  Sivasakthivel, T.; Murugesan, K.; Thomas, H.R. Optimization of operating 
parameters of ground source heat pump system for space heating and 
cooling by Taguchi method and utility concept. Appl. Energy 2014, 116, 
76–85. 

133.  Ma, W.; Fang, S.; Liu, G. Hybrid optimization method and seasonal 
operation strategy for distributed energy system integrating CCHP, 
photovoltaic and ground source heat pump. Energy 2017, 141, 1439–
1455. 

134.  Li, W.; Li, X.; Wang, Y.; Tu, J. An integrated predictive model of the long-
term performance of ground source heat pump (GSHP) systems. Energy 
Build. 2018, 159, 309–318. 

135.  Ruiz-Calvo, F.; Montagud, C.; Cazorla-Marín, A.; Corberán, J.M. 
Development and experimental validation of a TRNSYS dynamic tool for 
design and energy optimization of ground source heat pump systems. 
Energies 2017, 10, 1510. 



 

60 

136.  Wetter, M. Genopt R, generic optimization program, user manual, version 
3.1. 1. lawrence berkeley national laboratory; 2016. Man. Progr. 
downloadable Free Charg. from, http//simulationresearch. lbl. 
gov/GO/(last accessed 10.08. 13). 

137.  Cimmino, M. The effects of borehole thermal resistances and fluid flow 
rate on the g-functions of geothermal bore fields. Int. J. Heat Mass 
Transf. 2015, 91, 1119–1127. 

138.  Ruiz-Calvo, F.; Montagud, C. Reference data sets for validating GSHP 
system models and analyzing performance parameters based on a five-
year operation period. Geothermics 2014, 51, 417–428, 
doi:10.1016/j.geothermics.2014.03.010. 

 

 

 

 



 

 

 


